- #36
treddie
- 91
- 2
Interesting...I have gone through my steps and cannot find anything wrong. I ran it through Maple, but of course it went about it differently and came up with an equivalent to mine, if mine is indeed correct. Perhaps mine and yours are equivalent. At any rate, here is what I did:
##u_f - u_o = \frac{\Delta m}{m_o + \Delta m}(u_{in} - u_o) + \frac{\Delta m}{m_o + \Delta m}(Pv)_{in}##
The substitutions were:
##u_f - u_o = C_v(T_f - T_o) + a \left( \frac{1}{v_o} - \frac{1}{v_f} \right)##
##u_{in} - u_o = C_v(T_{in} - T_o) + a \left( \frac{1}{v_o} - \frac{1}{v_{in}} \right)##
Substituting,
##C_v(T_f - T_o) + a \left( \frac{1}{v_o} - \frac{1}{v_f} \right) = \frac{\Delta m}{m_o + \Delta m} \left(C_v(T_{in} - T_o) + a \left( \frac{1}{v_o} - \frac{1}{v_{in}} \right) \right)+ \frac{\Delta m}{m_o + \Delta m}(Pv)_{in}##
Simplifying,
##T_f = \frac{\Delta m}{m_o + \Delta m} \left( T_{in} - T_o + \frac{a}{v_oC_v} - \frac{a}{v_{in}C_v} \right) + \frac{\Delta m}{m_o + \Delta m} \left( \frac{(Pv)_{in}}{C_v} \right) - \frac{a}{v_oC_v} + \frac{a}{v_fC_v} + T_o##
I can show the intermediate steps if you want.
##u_f - u_o = \frac{\Delta m}{m_o + \Delta m}(u_{in} - u_o) + \frac{\Delta m}{m_o + \Delta m}(Pv)_{in}##
The substitutions were:
##u_f - u_o = C_v(T_f - T_o) + a \left( \frac{1}{v_o} - \frac{1}{v_f} \right)##
##u_{in} - u_o = C_v(T_{in} - T_o) + a \left( \frac{1}{v_o} - \frac{1}{v_{in}} \right)##
Substituting,
##C_v(T_f - T_o) + a \left( \frac{1}{v_o} - \frac{1}{v_f} \right) = \frac{\Delta m}{m_o + \Delta m} \left(C_v(T_{in} - T_o) + a \left( \frac{1}{v_o} - \frac{1}{v_{in}} \right) \right)+ \frac{\Delta m}{m_o + \Delta m}(Pv)_{in}##
Simplifying,
##T_f = \frac{\Delta m}{m_o + \Delta m} \left( T_{in} - T_o + \frac{a}{v_oC_v} - \frac{a}{v_{in}C_v} \right) + \frac{\Delta m}{m_o + \Delta m} \left( \frac{(Pv)_{in}}{C_v} \right) - \frac{a}{v_oC_v} + \frac{a}{v_fC_v} + T_o##
I can show the intermediate steps if you want.