Canonical Transformation (two degrees of freedom)

AI Thread Summary
The discussion focuses on finding canonical transformations for a system with two degrees of freedom, specifically using the symplectic approach. The transformation equations for momenta \(P_1\) and \(P_2\) are derived, leading to specific forms that satisfy the canonical conditions. The Hamiltonian is simplified under these transformations, indicating that certain terms can be ignored. The equations of motion are established, revealing that \(P_1\) is a constant of motion, allowing integration to express \(Q_1\) in terms of time and initial values. The problem remains unresolved regarding the initial conditions needed for a complete solution.
sayebms
Messages
31
Reaction score
0

Homework Statement


Point transformation in a system with 2 degrees of freedom is: $$Q_1=q_1^2\\Q_2=q_q+q_2$$
a) find the most general $P_1$ and $P_2$ such that overall transformation is canonical
b) Show that for some $P_1$ and $P_2$ the hamiltonain $$H=\frac{a}{2}(\frac{p_1-p_2}{wq_1})^2+bp_2+c(q_1+q_2)^2$$
(Note: a,b,c, constant) can be transformed in a way that $Q_1$ and $Q_2$ could be ignored.
c) Finally solve the problem and find equations for $q_1,q_2,p_1$ and $p_2$ in terms of t and their initial values.

Homework Equations


-Symplictic approach

The Attempt at a Solution


a) in order to find the transformation for $P$'s I use the symplectic approach:
in this approach we have the following condition for the canonical transformations $$\tilde{M}JM=J$$
where M is the matrix:
$$M=\begin{bmatrix} \frac{\partial Q_1}{\partial q_1}&\frac{\partial Q_1}{\partial q_2}&\frac{\partial Q_1}{\partial p_1}&\frac{\partial Q_1}{\partial p_2}\\\frac{\partial Q_2}{\partial q_1}&\frac{\partial Q_2}{\partial q_2}&\frac{\partial Q_2}{\partial p_1}&\frac{\partial Q_2}{\partial p_2}\\\frac{\partial P_1}{\partial q_1}&\frac{\partial P_1}{\partial q_2}&\frac{\partial P_1}{\partial p_1}&\frac{\partial P_1}{\partial p_2}\\\frac{\partial P_2}{\partial q_1}&\frac{\partial P_2}{\partial q_2}&\frac{\partial
P_2}{\partial p_1}&\frac{\partial P_2}{\partial p_2}\end{bmatrix}$$
and $$J=\begin{bmatrix} 0&0&1&0\\0&0&0&1\\-1&0&0&0\\0&-1&0&0\end{bmatrix}$$
so applying the symplectic methods conditions I get the following equations:$$\frac{\partial P_2}{\partial p_2}=1\\\frac{\partial P_2}{\partial p_1}=0\\\frac{\partial P_1}{\partial p_2}=\frac{-1}{2q_1}\\\frac{\partial P_1}{\partial p_1}=\frac{1}{2q_1}$$
which then gives me the following most general transformations for $P_1$ and $P_2$ :
$$P_1=\frac{1}{2q_1}(p_1-p_2)+g(q_1,q_2)\\P_2=p_2+f(q_1,q_2)\\2q_1 \frac{\partial g}{\partial q_2}+\frac{\partial f}{\partial q_2}-\frac{\partial f}{\partial q_1}$$
b) this part is very simple if we choose $$P_1=\frac{p_1-p_2}{2q_1}\\g(q_1,q_2)=0$$and $$P_2=p_2+\frac{c}{b}(q_1+q_2)^2\\f(q_1,q_2)=\frac{c}{b}(q_1+q_2)^2$$
we see that with these choices the three equations we found earlier are satisfied. and the Hamiltonian becomes:$$H=\frac{a}{2}P_1^2+bP_2$$
But I don't know how I can proceed for solving part c). Any help is appreciated. Thank you very much.[/B]
 
Physics news on Phys.org
You have the Hamiltonian, so you can just write down the equations of motion and solve them.
 
  • Like
Likes sayebms
so using the Hamiltonian equations of motion I have: $$\dot{Q_1}=\frac{\partial H}{\partial P_1}=aP_1 \Longrightarrow \frac{d(q_1^2)}{dt}=2q_1\dot{q_1}=aP_1\\\dot{Q_2}=\frac{\partial H}{\partial P_2}=b \Longrightarrow \dot{q_1}+\dot{q_2}=b\\\dot{P_1}=0\\\dot{P_2}=0$$ So I guess these are the equations that I am supposed to solve. But there is one more thing that I don't get; the problem hasn't given us anything on initial conditions but still wants the equations of q,p,t in terms of t and Initial values.Thank you very much again.
 
$$P_1$$ is a constant of motion, so you can integrate the right side to get $$Q_1 = aP_1 \cdot t$$.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top