Centripetal Acceleration of Stone Problem

AI Thread Summary
The discussion revolves around a physics problem involving the centripetal acceleration of a stone being swung in a vertical circle. Participants express confusion about how to approach the problem, particularly in calculating the stone's range upon release at different points and determining its acceleration before and after release. Key points include recognizing the need to analyze the stone's motion in terms of vector components and applying constant acceleration formulas. There is a consensus that the stone will have a greater range when released from point A compared to point B, but the calculations require careful consideration of initial conditions. The conversation emphasizes the importance of understanding the forces acting on the stone and accurately defining starting points for calculations.
The_ArtofScience
Messages
83
Reaction score
0

Homework Statement



A stone at the end of a sling is whirled in a vertical circle of radius 1.20 m at a constant speed v0 = 1.50 m/s. The center of the sling is 1.50 m above the ground. What is the range of the stone if it is released when the sling is inclined at 30 degrees with the horizontal (a) at A? (b) at B? What is the acceleration of the (c) stone just before it is released at A? (d) just after it is released at A?

http://www.fen.bilkent.edu.tr/~mb/phys101/CH4.pdf
The figure is on page 7. Its problem #57


The Attempt at a Solution



I'm having trouble just thinking of what a set up would be like for this problem. I wish I could give some work here but I'm tottally stumped
 
Last edited by a moderator:
Physics news on Phys.org
Hi

probably need to recoginise the answer to c) and d) before attempting a) & b)

for c) and d) think about the type of motion, for c) this is the circular motion, so what is the acceleration. for d) what forces act on the stone after release?

for a) and b) you know initial velocity & position so should be able to calculate range...
 
I'm not sure where to begin. First off I don't know what its really asking. I have an idea that the stone at the end of point A will fling at a higher range than point B, but other than that I don't see how to get there

So I think the appropriate eq is xf = x0 + v0t --> 1.20 + 1.50cos(30 deg)t
Solving for t in the y direction 1.50 = 1/2(9.8)t^2 --> t = .55328
Then, xf = 1.20 + 1.50(cos(30 deg))(.55328) = 1.9187 m

I'm not sure what to do with point B. Don't point A and point B both have the same data? But that wouldn't really work out because point B is supposed to have a smaller range than point A
 
look like you're on the right track...

this questions consiet of two main parts
- finding vector components
- using constant acceleration formula

first you need to find the vector components of the initial position (on the circle) and velocity

Once you have these you find use the initial hieght & y velocity to findt he time the stone is in the air for, as i think you have done.

Then use the time to find the distance traveled in the x direction

i think in your calulations you need to be a bit more careful defining your starting points... (ie initial position & velcoity) for example the y velocity is not included in your calculation of time
 
Last edited:
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top