MHB Challenge: Create 64 with two 4's

  • Thread starter Thread starter soroban
  • Start date Start date
  • Tags Tags
    Challenge
AI Thread Summary
The challenge is to create the number 64 using two 4's with various mathematical operations. Solutions presented include complex expressions involving logarithms and factorials, such as $-\lg \, \log_{\sqrt{4}} \, \underbrace{\sqrt{\sqrt{...\sqrt{4}}}}_{\text{65 times}}$ and $4^{\left(\log \sqrt{\sqrt{\sqrt{e^{4!}}}}\right)}$. An alternate solution is $4^{\left(\sqrt{\sqrt{\sqrt{4!}}}\right)}$, which simplifies the approach without using logarithms. The term "Perelman-like" is used to describe the logarithmic method, referencing a related problem from Yakov Perelman's work. The discussion highlights the creativity and complexity involved in solving mathematical challenges.
soroban
Messages
191
Reaction score
0

Using any of \{+,\;-,\;\times,\;\div,\;x^y,\;\sqrt{x},\;x!\}

. . create 64 with two 4's.
 
Mathematics news on Phys.org
Re: Challenge

In base 15:

44
 
Re: Challenge

(Clapping)
 
Re: Challenge

A Perelman-like solution suffices :

$-\lg \, \log_{\sqrt{4}} \, \underbrace{\sqrt{\sqrt{...\sqrt{4}}}}_{\text{65 times}}$

Or even,

$4^\left ({\log \sqrt{\sqrt{\sqrt{e^{4!}}}}} \right )$

But as $\log$ is not desired, a twist around the base of logarithm of the latter should do :

$\sqrt{\sqrt{\sqrt{4^{4!}}}}$
 
Last edited:
Re: Challenge

Hello, mathbalarka!

That's it! . . . Nice reasoning!

Alternate form: .4^{\left(\sqrt{\sqrt{\sqrt{4!}}}\right)}
 
Re: Challenge

Okay, thanks! The other form didn't click to me, really nice!

Now, in my post, the first form using logarithm is referred to as "Perelman-like" as another related, but twisted problem was given in Yakov Perelman's Mathematics Is Fun. He refers a challenger in a congress of physicist in Odessa. I couldn't find further reference, so just named this after him. (a year ago when I found out this kind of approach is in general very doable for these problems)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top