- #1
Olinguito
- 239
- 0
Define a Fibonacci sequence by
$$\varphi_0=0,\,\varphi_1=1;\ \varphi_{n+2}=\varphi_{n+1}+\varphi_n\ \forall \,n\in\mathbb Z^+\cup\{0\}.$$
Show that
$$5\varphi_n^2+4(-1)^n$$
is a perfect square for all non-negative integers $n$.
$$\varphi_0=0,\,\varphi_1=1;\ \varphi_{n+2}=\varphi_{n+1}+\varphi_n\ \forall \,n\in\mathbb Z^+\cup\{0\}.$$
Show that
$$5\varphi_n^2+4(-1)^n$$
is a perfect square for all non-negative integers $n$.
Last edited: