Checking if sets are subspaces of ##\mathbb{R}^{3}##

  • Thread starter Thread starter yango_17
  • Start date Start date
  • Tags Tags
    Sets Subspaces
yango_17
Messages
60
Reaction score
1

Homework Statement


Is the set ##W## a subspace of ##\mathbb{R}^{3}##?
##W=\left \{ \begin{bmatrix}
x\\
y\\
z
\end{bmatrix}:x\leq y\leq z \right \}##

Homework Equations

The Attempt at a Solution


I believe the set is indeed a subspace of ##\mathbb{R}^{3}##, since it looks like it will satisfy the three properties of a subspace. I'm wondering as to how one would go about explicitly proving this. Any help would be appreciated. Thanks.
 
Physics news on Phys.org
yango_17 said:

Homework Statement


Is the set ##W## a subspace of ##\mathbb{R}^{3}##?
##W=\left \{ \begin{bmatrix}
x\\
y\\
z
\end{bmatrix}:x\leq y\leq z \right \}##

Homework Equations

The Attempt at a Solution


I believe the set is indeed a subspace of ##\mathbb{R}^{3}##, since it looks like it will satisfy the three properties of a subspace. I'm wondering as to how one would go about explicitly proving this. Any help would be appreciated. Thanks.
What are the three properties you need to verify? You didn't list them in the 2nd section or anywhere else.

Generally, you take one or two arbitrary members of your set and show that the set is closed under addition and scalar multiplication.
 
So, the properties would be that the set needs to contain the zero vector, needs to be closed under scalar multiplication, and needs to be closed under addition. When you say take arbitrary members of the set to test the last two properties, what exactly do you mean?
 
yango_17 said:
So, the properties would be that the set needs to contain the zero vector, needs to be closed under scalar multiplication, and needs to be closed under addition. When you say take arbitrary members of the set to test the last two properties, what exactly do you mean?
Let, say, ##\vec{u}## and ##\vec{v}## be elements of W, with ##\vec{u} = <u_1, u_2, u_3>## and ##\vec{v} = <v_1, v_2, v_3>##.
What condition do these vectors need to satisfy in order to belong to set W? You are given this condition.

Is 0 an element of W?
If ##\vec{u}## and ##\vec{v}## are arbitrary members of W, is ##\vec{u} + \vec{v}## also in W?
If ##\vec{u}## is an arbitrary member of W, and k is an arbitrary scalar, is ##k\vec{u}## also in W?

If the answers to these questions are all "yes", then the set is a subspace of ##\mathbb{R}^3##.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top