Clarification on bathochromic shift

  • Thread starter Thread starter pisluca99
  • Start date Start date
AI Thread Summary
A bathochromic shift, or red shift, occurs when there is increased conjugation among chromophore groups, leading to a higher absorption lambda max. The discussion highlights that this shift is often associated with the HOMO-LUMO transition, specifically the π2 --> π*1 transition in butadiene compared to ethene. However, a hypsochromic shift is noted for the π1 --> π*2 transition in butadiene, indicating that not all transitions experience the same shift. The conversation raises the question of whether the red shift is exclusively linked to the HOMO-LUMO transition or if it can also apply to other orbital transitions. The example of ethene and vinyl chloride illustrates how the addition of an auxochrome, like chlorine, enhances conjugation, resulting in a higher absorption lambda max and a red shift. This prompts further inquiry into whether increases in lambda max consistently relate to the HOMO-LUMO transition or extend to other orbitals as well.
pisluca99
Messages
63
Reaction score
4
Generally, a bathochromic shift is observed when there is conjugation between more chromophore groups, that is, an increase in the absorption lambda max is observed. But what lambda max is being referred to?

For example, comparing ethene and butadiene there is a batochromic shift only if we consider the π2 --> π*1 transition (see image), that is, the HOMO-LUMO transition.
In contrast, if we go to consider the π1 --> π*2 transition of butadiene, a hypsochromic shift is observed, as the lambda max relative to this transition is smaller than the lambda max relative to the π --> π* transition of ethene.

That said, does the red shift, then, ALWAYS refer to the HOMO-LUMO transition or does it affect other orbitals?

Another example is that of ethene and vinyl chloride: in this case we add an auxochrome group (Chlorine) that increases conjugation. Because of this, we observe an increase in the absorption lambda max, as well as a red shift. Again, does the increase in lambda max always refer to the HOMO-LUMO transition or to other orbitals?
 

Attachments

  • IMG_20230601_134938.jpg
    IMG_20230601_134938.jpg
    19.4 KB · Views: 141
Last edited:
Thread 'How to make Sodium Chlorate by Electrolysis of salt water?'
I have a power supply for electrolysis of salt water brine, variable 3v to 6v up to 30 amps. Cathode is stainless steel, anode is carbon rods. Carbon rod surface area 42" sq. the Stainless steel cathode should be 21" sq. Salt is pure 100% salt dissolved into distilled water. I have been making saturated salt wrong. Today I learn saturated salt is, dissolve pure salt into 150°f water cool to 100°f pour into the 2 gallon brine tank. I find conflicting information about brine tank...
Engineers slash iridium use in electrolyzer catalyst by 80%, boosting path to affordable green hydrogen https://news.rice.edu/news/2025/engineers-slash-iridium-use-electrolyzer-catalyst-80-boosting-path-affordable-green Ruthenium is also fairly expensive (a year ago it was about $490/ troy oz, but has nearly doubled in price over the past year, now about $910/ troy oz). I tracks prices of Pt, Pd, Ru, Ir and Ru. Of the 5 metals, rhodium (Rh) is the most expensive. A year ago, Rh and Ir...
Back
Top