A Classical statistical physics -- Number of microstates

AI Thread Summary
Phase volume and the number of microstates in a physical system are related but not identical concepts. In systems with a continuum of states, such as classical gases, defining the number of states is problematic due to the continuity of phase space, making it impossible to count distinct states accurately. Conversely, in systems with discrete states, like the Ising model, the number of states corresponds to the cardinality of the configuration space, which can be calculated based on degrees of freedom and symmetries. Classical statistical mechanics faces conceptual challenges that are often resolved through quantum theory, particularly when counting microstates. The discussion highlights the complexities of entropy and state counting in classical systems, emphasizing the limitations of classical approaches.
LagrangeEuler
Messages
711
Reaction score
22
Phase volume is it the same as the number of total microstates in some physical system? Phase volume= volume of phase space. Or there is some difference?
 
Physics news on Phys.org
In the case of systems with a continuum of states (e.g. a classical gas) the concept of "number of states" is not well defined I think: let A be a state and B a second state, identical to A, but with this difference:

##v_i^A = (v_x,v_y,v_z) → v_i^B = (v_x + ε, v_y,v_z) ##

where ##i## is the label of a generic (tipically identical to some other) particle. Well, states A and B are different and there is no way to count the minimum number of states for the system to go from A to B. It's a consequence of the continuity of phase space (continuity of energy, if you prefer).

In the case of classical systems with discrete states (e.g. Ising model) the volume of phase space is no more considered (you cannot do an integral over that space, as far as I know). It is usually considered a space of configuration (e.g. in the one dimensional Ising model with only spin up or down and ##N## sites, it is a space with all the possible ##N##-dimensional vector with component ##±1##). In this case the number of states is the number of element in this set (the cardinality of the set). As far as I know, this number is usually calculated "indirectly", in the sense that you do considerations over the number of degrees of freedom and simmetries (in principle you can calculate it summing ##1## for each state but you should know them all, i.e. you should know their number.)

I think that's right, but try to check what I told you.
 
The problem is that classical statistical mechanics is plagued with conceptual problems which are easily solved only with quantum theory. To count microstates the most simple way is to introduce a finite volume, periodic boundary conditions for the Schrödinger wave function and then calculate the states contained in a momentum volume ##\mathrm{d}^3 \vec{p}##, which turns out to be ##V \mathrm{d}^3 \vec{p}/(2 \pi \hbar)^3## in the large-volumen/thermodynamical limit (for bosons the limit is not that trivial due to the formation of a Bose-Einstein condensate at low temperatures, but that's far from the realm where the classical (Boltzmann) limit is valid).
 
Yeah, one example of a problem of the type vanhees71 probably meant is the "paradox" that the entropy of any fluid should be increasing all the time without bound because its mixing with itself by diffusion isn't really different from the mixing of two different fluids (in classical mechanical reasoning).
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top