Clay falling onto a pan attached to a vertical spring

AI Thread Summary
A spring is attached to a ceiling with a pan that stretches 5 cm when a 100 g mass is placed on it. The problem involves a 120 g lump of clay dropped from 40 cm onto the pan, and the goal is to find the maximum distance the pan moves downward. The correct answer is 0.233 meters, but the student struggles to reach this result using conservation of momentum and mechanical energy equations. Key points in the discussion include the importance of including gravitational force and spring potential energy in calculations. The student acknowledges missing elements in their equations and seeks clarification on achieving the correct answer.
ultimateman
Messages
7
Reaction score
0

Homework Statement



"A spring is hung from the ceiling. A pan of mass 100.0 g is attached to the end, which causes it to stretch 5.00 cm. Find the maximum distance the pan moves downward when a lump of clay of mass 120.0 g is dropped from a height of 40.0 cm onto the pan."

The correct answer, according to my teacher is 0.233 meters.

Homework Equations



Conservation of momentum, perfectly inelastic collision.

m1v1i + m2v2i = (m1 + m2)vf

Conservation of mechanical energy.

MEi = MEf

PEg = mgh
PEe = 1/2 kx^2
KE = 1/2 mv^2

Work kinetic energy theorem.

Fnet d cosθ = 1/2 m (vf^2 - vi^2)

The Attempt at a Solution



I tried a perfectly inelastic conservation of momentum + work-KE theorem approach.

m(ball)v0 + 0 = M(combined)v(final)

Fnet d cos(θ) = 1/2 M(vf^2 - vi^2)

where Fnet was the average spring force minus gravity, F = [k(0.05) + k(x)] / 2 - M(combined)g

d was (x+0.05)

and vf = 0, vi = root(2gh)

UPDATE:

OK so I tried conservation of mechanical energy after the collision to no avail. I did:

1/2 (.22kg) (1.53 m/s)^2 + (.22 kg)(9.81) x = 1/2 (19.62 N/m) (x+0.05)^2

Solving for x I got x = 0.225 m.

I still can't get x = 0.233m. I'm sure it's not a rounding error of some sort. What am I missing?
 
Last edited:
Physics news on Phys.org
ultimateman said:
I have tried using a conservation of energy approach. This equation looked like:

PEg(ball) + PEg(pan) + PEe(spring) = PEe(spring, (x+0.05))
Mechanical energy is not conserved during the collision, so that won't work.

I also tried a perfectly inelastic conservation of momentum + work-KE theorem approach.

m(ball)v0 + 0 = M(combined)v(final)
So far so good.

Fnet d cos(θ) = 1/2 M(vf^2 - vi^2)

where Fnet was the average spring force, F = [k(0.05) + k(x)] / 2

d was x

and vf = 0, vi = root(2gh)
You forgot about gravity.

Hint: After the collision, mechanical energy is conserved.
 
Actually I forgot to include gravity in my attempted solution post, but I did include it in my actual calculations already and I still got the wrong answer. : / But Fnet was the average spring force and gravity.

Thanks for pointing out that mechanical energy is not conserved during the collision. Obviously I should have seen that with it being perfectly inelastic.

Trying conservation of mechanical energy after the collision.

EDIT: OK so I tried conservation of mechanical energy after the collision to no avail. I did:

1/2 (.22kg) (1.53 m/s)^2 + (.22 kg)(9.81) x = 1/2 (19.62 N/m) (x+0.05)^2

Solving for x I got x = 0.225 m.

I still can't get x = 0.233m. I'm sure it's not a rounding error of some sort. What am I missing?
 
Last edited:
ultimateman said:
EDIT: OK so I tried conservation of mechanical energy after the collision to no avail. I did:

1/2 (.22kg) (1.53 m/s)^2 + (.22 kg)(9.81) x = 1/2 (19.62 N/m) (x+0.05)^2

Solving for x I got x = 0.225 m.

I still can't get x = 0.233m. I'm sure it's not a rounding error of some sort. What am I missing?
The left side of your equation is incomplete. You forgot the spring potential energy.
 
Doc Al said:
The left side of your equation is incomplete. You forgot the spring potential energy.

Derp...Ty!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...

Similar threads

Back
Top