- #1
Dustinsfl
- 2,281
- 5
The eigenvalues are found by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
For large eigenvalues, the intersection get closer and closer to $\lambda_n = \pi k$ where $k\in\mathbb{Z}^+$ and $k > 15$.
Is this correct? Without arbitrary picking a $k$, is there a better way to determine a $k$ for when $\lambda\to\pi k$?
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
For large eigenvalues, the intersection get closer and closer to $\lambda_n = \pi k$ where $k\in\mathbb{Z}^+$ and $k > 15$.
Is this correct? Without arbitrary picking a $k$, is there a better way to determine a $k$ for when $\lambda\to\pi k$?