Complex Analysis: Largest set where f(z) is analytic

monnapomona
Messages
39
Reaction score
0

Homework Statement


Find the largest set D on which f(z) is analytic and find its derivative. (If a branch is not specified, use the principal branch.)

f(z) = Log(iz+1) / (z^2+2z+5)

Homework Equations

The Attempt at a Solution


Not sure how to even attempt this solutions but I wrote down that
iz+1 ∉ (-∞,0]. This is where I get confused! Not sure if I have to put z in x+iy form.

For the denominator, z^2+2z+5 ≠ 0 implies z = +/- 1-2i.

So my incomplete solution would be D = C\ { +/- 1-2i } υ { ?? } and the derivative is 1/(iz+1)?
 
Physics news on Phys.org
For the log, the restriction is on the real part.
For your derivative, it seems like you lost the contribution from the denominator.
 
RUber said:
For the log, the restriction is on the real part.
For your derivative, it seems like you lost the contribution from the denominator.

Okay, so if it's just the real part, iz+1 = i(x+iy) + 1 = ix - y +1 so the restriction would just be -y+1, where y ≠ 1?

I'm unsure what to do for a derivative, in my class notes it states that [log z ]' = 1/z so would it include the whole f(z) function, ie. ((z^2 + 2z + 5) / (iz+1))
 
This would be either the product rule or the quotient rule.
##[\frac{g(z)}{f(z)}]'= \frac{fg'-gf'}{[f(z)]^2}##
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top