- #1
FanofAFan
- 45
- 0
Homework Statement
|a| < 1 a is arbitrary, then show that |z| [tex]\leq[/tex] 1 iff [tex]\frac{z-a}{1-a(bar)z}[/tex] [tex]\leq[/tex] 1
Homework Equations
possible the triangle inequality
The Attempt at a Solution
[tex]\frac{z-a}{1-a(bar)z}[/tex] is analytic everywhere except at 1/a(bar)
|z - a|2 [tex]\leq[/tex] |1-a(bar)z|2
|z|2-2|z||a| + |a|2 =|1| -2|z||a(bar)| +|a|2|z|2