Composite functions and substitutions Quick Question

In summary: The domain of $f \circ g$ is $[-1,+\infty)$,as you said!In summary, the domains of $f \circ g$, $g \circ f$, and $f \circ g =\sqrt{\sqrt{x+5}-2}$ are $[-1,-5,2,+\infty)$, $[2,+\infty)$, and $[6,+\infty)$, respectively.
  • #1
ardentmed
158
0
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:
08b1167bae0c33982682_3.jpg


For the first one, since f o g = √(√x+5)-2), the domain is [-1,infinity)

Likewise, g o f = √(√x-2)+5) and the domain is [27,infinity) since x-2 >= 25.

Also, since f o f = √(√x-2)-2), the domain is [6,infinity) because √x-2) >= 2 which means x >=6.

Furthermore, since g o g = √(√x+5)+5), the domain is [20,infinity) because √x+5) >= -5 which means x >= 25-5
As for the second question, f o g = 3/(3-2x) via simple substitution. And since x cannot = 3/2, the domain is:

(-infinity, 3/2) u (3/2, infinity)

Please tell me if I'm on the right track.

Thanks again guys.
 
Mathematics news on Phys.org
  • #2
ardentmed said:
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:For the first one, since f o g = √(√x+5)-2), the domain is [-1,infinity)

Likewise, g o f = √(√x-2)+5) and the domain is [27,infinity) since x-2 >= 25.

Also, since f o f = √(√x-2)-2), the domain is [6,infinity) because √x-2) >= 2 which means x >=6.

Furthermore, since g o g = √(√x+5)+5), the domain is [20,infinity) because √x+5) >= -5 which means x >= 25-5
As for the second question, f o g = 3/(3-2x) via simple substitution. And since x cannot = 3/2, the domain is:

(-infinity, 3/2) u (3/2, infinity)

Please tell me if I'm on the right track.

Thanks again guys.

Hi! (Wave)

For the first subquestion,it is like that:

$$f(g(x))=\sqrt{\sqrt{x+5}-2}$$

It must be:

$$x+5 \geq 0 \Rightarrow x \geq -5$$

AND

$$\sqrt{x+5}-2 \geq 0 \Rightarrow \sqrt{x+5} \geq 2 \Rightarrow x+5 \geq 4 \Rightarrow x \geq -1 $$

Therefore,$x \geq \max \{ -1,-5\} \Rightarrow x \geq -1$

So,the domain of $f \circ g$ is $[-1,+\infty)$,as you said!

$$g \circ f=g(f(x))=\sqrt{\sqrt{x-2}+5}$$

It must be:

$$x-2 \geq 0 \Rightarrow x \geq 2$$

AND

$$\sqrt{x-2}+5 \geq 0 \Rightarrow \sqrt{x-2} \geq -5 \text{ ,which is true } \forall x$$

Therefore, $x \geq 2$

So,the domain of $g \circ f$ is $[2,+\infty)$.

The domain of $f \circ f =\sqrt{\sqrt{x-2}-2}$ is $[6,+\infty)$ as you correctly mentioned.

$$g \circ g= \sqrt{\sqrt{x+5}+5}$$

It must be:

$$x+5 \geq 0 \Rightarrow x \geq -5$$

AND

$$\sqrt{x+5}+5 \geq 0 \Rightarrow \sqrt{x+5} \geq -5 \text{ which is true } \forall x$$

Therefore,the domain of $g \circ g$ is $[-5,+\infty)$.
 
  • #3
For the second subquestion,it is like that:

For the second subquestion:

$$f \circ g=\frac{\frac{3}{x}}{\frac{3}{x}-2}=\frac{3}{3-2x}$$
It must be :

$$x \neq 0 \text{ , and also } 3-2x \neq 0 \Rightarrow x \neq \frac{3}{2}$$

Therefore,the domain is:

$$(-\infty,0) \cup (0,\frac{3}{2}) \cup (\frac{3}{2},+\infty)$$

$$g \circ f=\frac{3}{\frac{x}{x-2}}=\frac{3(x-2)}{x}$$

It must be:
$$x \neq 2 \text{ and } x \neq 0$$

Therefore,the domain is:
$$(-\infty,0) \cup (0,2) \cup (2,+\infty)$$
 

FAQ: Composite functions and substitutions Quick Question

What are composite functions?

Composite functions are functions that are made up of two or more other functions. The output of one function becomes the input of another function.

How do you represent composite functions?

Composite functions are typically represented using the notation f(g(x)), where f and g are two individual functions. This means that the output of g(x) is used as the input for f(x).

What is the purpose of using composite functions?

Composite functions allow us to combine simpler functions to create more complex functions. They are used to model real-world situations and to solve problems in mathematics and science.

What is the process of evaluating composite functions?

To evaluate a composite function, you need to substitute the inner function's output into the outer function. In other words, you need to plug in the value of g(x) into f(x) to get the final result.

How do you handle substitutions in composite functions?

When dealing with substitutions in composite functions, it is important to remember the order of operations. You need to evaluate the inner function first, and then use its output as the input for the outer function. It can be helpful to use parentheses to keep track of the order of operations.

Similar threads

Replies
11
Views
1K
Replies
3
Views
884
Replies
3
Views
950
Replies
8
Views
4K
Replies
3
Views
2K
Back
Top