- #36
Phrak
- 4,267
- 6
Ya-all quite pickin' on phya. You all should know better. Good grief!
Normally, phya, in the way these things are taught, right or wrong, a vector or a line is independent of the coordinates in which they are described. It's really a matter of convention. In this convention, we assume that a line is independent of the coordinates, such as x,y and z by which we measure its parts. It has an existence of it's own, and the coordinates are a matter of choice.
You, on the other hand, are taking the opposite view. You take two parallel lines and wrap them in a circle. You are taking the coordinates as fundamental and the line is a mutable object.
In your system x-->radius and y-->an angle, so that parallel lines in in (x,y) are still parallel. There's nothing wrong with this, it's not the convention so people get confuse, but it certainly not wrong--just different, and a perspective that may have great value.
Normally, phya, in the way these things are taught, right or wrong, a vector or a line is independent of the coordinates in which they are described. It's really a matter of convention. In this convention, we assume that a line is independent of the coordinates, such as x,y and z by which we measure its parts. It has an existence of it's own, and the coordinates are a matter of choice.
You, on the other hand, are taking the opposite view. You take two parallel lines and wrap them in a circle. You are taking the coordinates as fundamental and the line is a mutable object.
In your system x-->radius and y-->an angle, so that parallel lines in in (x,y) are still parallel. There's nothing wrong with this, it's not the convention so people get confuse, but it certainly not wrong--just different, and a perspective that may have great value.