I Confused about unit conversion involving natural units

AI Thread Summary
The discussion revolves around converting units for an atomic transition expression, specifically from natural units (Joules) to wavenumber (cm^-1) and the implications of using different constants. The user is confused about converting a term from 1/A (angstrom) to the required units, noting that multiplying by 10^8 would convert to 1/cm. There is a debate on whether to use hc instead of ħc for the conversion, with clarification that spectroscopists define wavenumber as 1/λ rather than k = 2π/λ. The conversation emphasizes the importance of making implicit conversion factors explicit to avoid errors in calculations.
kelly0303
Messages
573
Reaction score
33
Hello! I have an expression whose natural units are Joules, but all the terms are expressed in terms of cm##^{-1}## (it is for an atomic transition). I have a term in the expression whose units are 1/A (angstrom) and I am not sure how to convert it to what I need. On one hand, if I were to go from 1/A to 1/cm, I would need to multiply that term by ##10^8##. On the other hand, if I want to convert to J, I need to multiply by ##\hbar## c, then convert from J to cm##^{-1}##, which gives ##15927759.569##. The difference between the 2 approaches is ##2\pi##, but I am not sure why. Should I actually use hc instead of ##\hbar##c? The issue is that the formula is defined using ##\hbar## and I am not sure what I am doing wrong. For reference I am talking about equation 1 in this paper (##\alpha_5##, ##A_1## and ##A_2## are unitless). Thank you!
 
Physics news on Phys.org
You have implicit conversion factors somewhere. You need to make them explicit. (Well, you don't need to, but the chances of screwing up are smaller if you do)
 
  • Like
Likes sophiecentaur
kelly0303 said:
On one hand, if I were to go from 1/A to 1/cm, I would need to multiply that term by ##10^8##.
Correct.
kelly0303 said:
Should I actually use hc instead of ##\hbar##c?
Yes. What spectroscopists refer to as wave number is ## 1/\lambda ##, not ## k = 2 \pi / \lambda ##, as theorists often do. In terms of energy (## E=hc/\lambda ##), ##\rm 1 ~eV = 8065.5~cm^{-1} = 1.6022 \times 10^{-19}~J##.
 
Last edited:
Thread 'Is there a white hole inside every black hole?'
This is what I am thinking. How much feasible is it? There is a white hole inside every black hole The white hole spits mass/energy out continuously The mass/energy that is spit out of a white hole drops back into it eventually. This is because of extreme space time curvature around the white hole Ironically this extreme space time curvature of the space around a white hole is caused by the huge mass/energy packed in the white hole Because of continuously spitting mass/energy which keeps...
Why do two separately floating objects in a liquid "attract" each other ?? What if gravity is an emergent property like surface tension ? What if they both are essentially trying to *minimize disorder at the interfaces — where non-aligned polarized particles are forced to mix with each other* What if gravity is an emergent property that is trying to optimize the entropy emerging out of spin aligned quantum bits
Back
Top