Confusion about Noether's theorem

AI Thread Summary
Noether's theorem connects symmetries in physics to conservation laws, stating that if an action is invariant under a symmetry transformation, a corresponding conserved quantity exists. The discussion highlights confusion regarding the relationship between the invariance of the action and the invariance of equations of motion, particularly when considering boundary conditions. It is noted that while the action can be invariant, transformed fields may not maintain the same boundary values, complicating the comparison of actions. Clarification is sought on how the invariance of the action implies that transformed fields still satisfy the equations of motion. The conversation emphasizes the importance of understanding these foundational concepts for mastering quantum field theory.
sam_bell
Messages
65
Reaction score
0
Hi,

I keep running my brain in circles while trying to get a solid grip on Noether's theorem. (In Peskin and Schroeder they present this as a one-liner.) But I'm having trouble seeing the equivalence between "equations of motion are invariant" and "action is invariant (up to boundary term)". Now I know that when the equations of motion are satisfied then there is no change in the action for infinitesimal variations. More exactly for variations which are zero on the boundary. Thus, there is a solution field \phi_0, and neighboring fields \phi_0 + \delta\phi, all of which have the same boundary values. If I apply a symmetry transform U on all these fields, then their boundary values need not all transform the same way (right?). If they don't have the same boundary values, then it doesn't feel like we should be comparing their action anymore. Or at least that we're comparing the wrong set of fields. And if that's the case, then who's to say that the transformed field U(\phi_0) continues to be an extrema of the action (i.e. solution of equations of motion)?

Sam
 
Physics news on Phys.org
I'm not sure whether I understand your question correctly. Noether's theorem is the statement that if an action functional is invariant under a one-parameter Lie group then the generator of this group is conserved along the trajectory of the system which is given by a stationary point of the action functional. Here are my 2cts for a proof

http://fias.uni-frankfurt.de/~hees/publ/lect.pdf

p. 53ff. I cannot provide a one-line proof as Peskin and Schroeder, but maybe the somewhat lengthier proof helps.
 
Peskin is probably not the best book to learn classical field theory from. Goldstein has a good treatment of Noether's theorem.
 
vanhees71 (or should I say Dr. vanhees71), That's a nice set of lecture notes. To clarify: I think I can follow along that a conserved current exists when the action is taken as invariant. In that sense I'm not confused about the formal statement of Noether's theorem.

What I have trouble seeing is how invariance of action (up to boundary term) implies the equations of motion are also invariant (i.e. U(\phi_0) ALSO satisfies the EOM). (I know the former can be taken as a definition of symmetry, as in your notes, but the latter viewpoint is what I'm accustomed to. Either way, the two ought be equivalent.) The reason I don't find it obvious: After symmetry transforming two fields with the same boundary value, their 'new' boundary values no longer need to agree. Thus, if some field is an extrema with respect to neighboring fields that agree on the boundary (i.e. solution), it is not clear to me that the transformed field is still an extrema with respect to a 'new' set of neighboring fields that agree on the transformed boundary. I noticed in your notes that the fields are taken to vanish at infinity of space and time. If there is no boundary, then I don't have much to quibble about. In other proofs though I typically see there is a start and end time. And then variations of the field are constrained to zero at these endpoints.

physwizard: Actually, My hope is to learn quantum field theory well. This is one of those early waypoints.

Thanks for responses/feedback.
 
Thread ''splain the hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top