MHB Convert another equation x^2+y^2=4 to polar form

AI Thread Summary
The equation x^2 + y^2 = 4 represents a circle centered at the origin with a radius of 2. To convert it to polar form, substitute x and y with their polar equivalents: x = r cos(θ) and y = r sin(θ). This leads to the equation r^2 cos^2(θ) + r^2 sin^2(θ) = 4, which simplifies using the Pythagorean identity to r^2 = 4. Therefore, the polar form of the equation is r = 2.
Elissa89
Messages
52
Reaction score
0
x^2+y^2=4

I have so far:

(r^2)cos^(theta)+(r^2)sin(theta)=4

Idk what I'm supposed to do from here
 
Mathematics news on Phys.org
You need to also square the trig. functions:

$$x^2+y^2=4$$

$$(r\cos(\theta))^2+(r\sin(\theta))^2=4$$

$$r^2\cos^2(\theta)+r^2\sin^2(\theta)=4$$

Factor the LHS...what do you have...is there a trig. identity you can apply?
 
MarkFL said:
You need to also square the trig. functions:

$$x^2+y^2=4$$

$$(r\cos(\theta))^2+(r\sin(\theta))^2=4$$

$$r^2\cos^2(\theta)+r^2\sin^2(\theta)=4$$

Factor the LHS...what do you have...is there a trig. identity you can apply?

got it! thanks!
 
Elissa89 said:
got it! thanks!

We see we have a circle centered at the origin, and in polar coordinates, that's simply a constant value for \(r\). The Cartesian equation:

$$x^2+y^2=a^2$$ where \(0<a\)

Has the polar equation:

$$r=a$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top