- #1
- 10,825
- 3,690
In adding some detail to a question about mass, I gave a link to an article by Sean Carrol:
https://www.preposterousuniverse.com/blog/2013/06/20/how-quantum-field-theory-becomes-effective/
'Nowadays we know you can start with just about anything, and at low energies, the effective theory will look renormalizable. This is useful, if you want to calculate processes in low-energy physics; disappointing if you’d like to use low-energy data to learn what is happening at higher energies. Chances are, if you go to energies that are high enough, spacetime itself becomes ill-defined, and you don’t have a quantum field theory at all. But on labs here on Earth, we have no better way to describe how the world works.'
If QFT is the low energy approximation of just about anything, and QM is a limiting case of QFT, it struck me that could possibly be the 'why' of QM?
Thanks
Bill
https://www.preposterousuniverse.com/blog/2013/06/20/how-quantum-field-theory-becomes-effective/
'Nowadays we know you can start with just about anything, and at low energies, the effective theory will look renormalizable. This is useful, if you want to calculate processes in low-energy physics; disappointing if you’d like to use low-energy data to learn what is happening at higher energies. Chances are, if you go to energies that are high enough, spacetime itself becomes ill-defined, and you don’t have a quantum field theory at all. But on labs here on Earth, we have no better way to describe how the world works.'
If QFT is the low energy approximation of just about anything, and QM is a limiting case of QFT, it struck me that could possibly be the 'why' of QM?
Thanks
Bill