- #1
WMDhamnekar
MHB
- 381
- 28
Hi,
If we multiply $En=-\frac{2\pi^2me^4Z^2}{ n^2h^2} $by $\frac{1}{(4\pi\epsilon_0)^2},$ it is the formula of electron energy in nth Bohr’s orbit. Why we should multiply it by $\frac{1}{ (4\pi\epsilon_0)^2}$ a Coulomb's constant in electrostatic force?
Where m=mass of electron, e= charge on electron h=Plank's constant, n=principal quantum number, Z= atomic mass number of element (Bohr'theory can only be applied to ions containing only one electron.$e.g. He^+, Li^{2+}, Be^{3+} $etc.
If we multiply $En=-\frac{2\pi^2me^4Z^2}{ n^2h^2} $by $\frac{1}{(4\pi\epsilon_0)^2},$ it is the formula of electron energy in nth Bohr’s orbit. Why we should multiply it by $\frac{1}{ (4\pi\epsilon_0)^2}$ a Coulomb's constant in electrostatic force?
Where m=mass of electron, e= charge on electron h=Plank's constant, n=principal quantum number, Z= atomic mass number of element (Bohr'theory can only be applied to ions containing only one electron.$e.g. He^+, Li^{2+}, Be^{3+} $etc.