Creating Mass w/ Velocity: Effects on EM Wave?

marlowgs
Messages
24
Reaction score
1
If I create an electromagnetic wave with electric and magnetic fields partially out of phase, would it behave the same as a mass with velocity less than the speed of light?
 
Physics news on Phys.org
Would such a wave satisfy Maxwell's equations?
 
In pair-production, a light wave (in-phase E&M) comes close to a heavy particle and turns into two masses with momentum, but the light wave needs to have a minimum energy to produce the particles. I’m wondering what happens if less than the minimum is there. Do the electric and magnetic fields go out of phase for a short time as the photon swipes past the heavy particle and does the partially out-of-phase photon act as an intermediate particle.
 
marlowgs said:
In pair-production, a light wave (in-phase E&M) comes close to a heavy particle and turns into two masses with momentum, but the light wave needs to have a minimum energy to produce the particles. I’m wondering what happens if less than the minimum is there. Do the electric and magnetic fields go out of phase for a short time as the photon swipes past the heavy particle and does the partially out-of-phase photon act as an intermediate particle.

You're mixing up the classical and quantum views of light, and that's not going to end well. :wink:

For pair production, the only approach I've seen uses the quantum view of light, in which light isn't a wave, it's photons (heuristically speaking). Then there is no such thing as the electric and magnetic fields being in phase or out of phase, because you're not modeling the light as electric and magnetic fields.

I don't know if anyone has even tried to model pair production with the light being treated classically. I suspect it wouldn't work.
 
  • Like
Likes vanhees71
It depends, which process you look at. If you have in mind pair production as the process ##\gamma + \gamma \rightarrow \mathrm{e}^+ + \mathrm{e}^-##, I don't see, how you could describe this in classical terms.

The other extreme is the Schwinger mechanism, where a very strong static classical electric field leads to the spontaneous production of electron-positron pairs. So far this has not been observed in nature.
 
  • Like
Likes HallsofIvy
PeterDonis said:
[..]
I don't know if anyone has even tried to model pair production with the light being treated classically. I suspect it wouldn't work.
Interesting question! A quick search about "pair production in classical electrodynamics" yields a paper by A. Carati as well as more recently, a Powerpoint and a youtube presentation by Martin Land. Obviously it's "work-in-progress".
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top