Critically Damped System - Viscous force

AI Thread Summary
The discussion revolves around a critically damped system involving a plate hanging from a spring with a viscous force acting on it. Participants debate the interpretation of the problem, particularly the role of gravity in causing oscillation, emphasizing that the spring and mass are the primary factors. There is confusion regarding the differential equation setup, with a focus on the homogeneous solution and its relation to critical damping. The consensus is that a critically damped system reaches equilibrium faster than overdamped systems, despite potential overshoot. Clarification on the problem's wording and its implications for oscillation is also highlighted.
dumbdumNotSmart
Messages
41
Reaction score
3

Homework Statement


You got a plate hanging from a spring (hookes law: k) with a viscous force acting on it, -bv.

If we place a mass on the plate, gravity will cause it to oscillate.

Prove that if we want the plate to oscillate as little as possible (Crticial damping, no?), then $$b=2m \sqrt{(g/Δx)}$$

Homework Equations


$$F=ma $$

The Attempt at a Solution


I cannot for the life of me get the differential equation right. Given the conditions I assume they want me to find b for a critically damped system (also answer looks like so). This is my best try

$$ma=-bv +mg -kx$$

Since g is not accompanied by x, dx or d2x it will be part of the particular solution, not the homogenous. What am I missing here?
 
Physics news on Phys.org
Gravity is a constant, therefore it will contribute a constant, nonoscillatory terms to the solution. Why do you think you need to focus on the homogeneous solution only?
 
dumbdumNotSmart said:

Homework Statement


You got a plate hanging from a spring (hookes law: k) with a viscous force acting on it, -bv.

If we place a mass on the plate, gravity will cause it to oscillate.

Prove that if we want the plate to oscillate as little as possible (Crticial damping, no?), then $$b=2m \sqrt{(g/Δx)}$$
Is this the actual wording of the problem? It's a bit misleading to say gravity will cause the system to oscillate since it's the spring and mass which results in the oscillation. Also, I wouldn't equate "oscillate as little as possible" with "critical damping." A highly overdamped system won't oscillate either, but a critically damped system could still allow some overshoot. That motion is arguably allowing "more oscillation" than the overdamped system.
 
  • Like
Likes dumbdumNotSmart
Dr.D said:
Gravity is a constant, therefore it will contribute a constant, nonoscillatory terms to the solution. Why do you think you need to focus on the homogeneous solution only?

Mainly because the condition for minimum time to reach equilibrium is given by a critically damped system. If this is so then it must be shown in the homogenous equation.

vela said:
Is this the actual wording of the problem? It's a bit misleading to say gravity will cause the system to oscillate since it's the spring and mass which results in the oscillation. Also, I wouldn't equate "oscillate as little as possible" with "critical damping." A highly overdamped system won't oscillate either, but a critically damped system could still allow some overshoot. That motion is arguably allowing "more oscillation" than the overdamped system.

The question is not phrased that way. I just wanted to make it clear that the initial impulse was given by gravity. The question does state that the system has to reach equilibrium sooner than any other system. According to my reading (Tipler & Mosca Physics textbook) a critically damped system will return to it's resting state sooner than any other system. A overdamped system will settle on the resting state but will take more time.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top