Cubic graph containing a 1-factor

  • Thread starter Thread starter Robb
  • Start date Start date
  • Tags Tags
    Cubic Graph
Robb
Messages
225
Reaction score
8
Homework Statement
Does there exist a cubic graph with three bridges that contains a 1-factor?
Relevant Equations
##k_0 (G-S) \leq |S|##

##k_0 (G-S) \leq |S|
I understand how to show a given graph does/does not contain a 1-factor but I'm not sure how to show existence (or the lack thereof). Please advise.
 
Physics news on Phys.org
Please define 'factor' here. I am familiar with the concept of Bridges but not with the concept of factors. And maybe you can add tags at the end of your expression so the Latex can render?
 
1-factor is the same as a perfect matching-A graph G has a perfect matching iff for ##S \in V(G), k_o(G-S) \leq |S|##. If G has odd order, then G has no 1-factor. A 1-factor is a 1-regular sub-graph of G.
Also, every bridgeless cubic graph contains a 1-factor as well as every cubic graph with at most two bridges contains a 1-factor.
 
  • Like
Likes WWGD
Restrict attention to a connected graph. If you remove the bridges the graph will fall into a number of components. What can you say about the number of vertices in each?
 
Since the thread seems to have died, here's my solution.

Start with three pentagonal circuits and a triangle.
Connect each vertex of the triangle to a vertex of a pentagon to make the graph connected with three bridges.
Within each pentagon, connect the remaining four vertices as two pairs, making the graph cubic.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...

Similar threads

Replies
7
Views
1K
Replies
1
Views
1K
Replies
6
Views
1K
Replies
2
Views
1K
Replies
9
Views
1K
Replies
6
Views
1K
Back
Top