- #71
Anamitra
- 621
- 0
Your example was a good one DaleSpam. Thank you!
I have tried to reason out the problem in this way.As we move along the curve the Christoffel tensor changes according to the changing values of the metric coefficients. If we divide the curve into small segments the differential equations themselves are different over each segment(due to the changing values of the Christoffel Tensor). So the boundary conditions go on changing as we move along it and so on the last lap of the journey we may end up with different boundary conditions. This can of course change the orientation of the vector. Perhaps this is the reason .I thank you for the example.
[But then again if you refer to a chain of inertial states there is no problem at all]. I have a very strong point here.[Please refer to the attachment]
Now my further confusions[I am simply trying to get my own ideas clear]:
1)I would like to refer to three vectors now. We represent a four dimensional space-time surface by f(x,y,z,t)=0 --------------- (1)
We may split the four dimensional space into a product of two spaces--a three dimensional space consisting of the variables x,y and z and a time space.The three dimensional space cannot have a surface restriction. Say it had some restriction like z=f1(x,y) .Then we could have substituted the value of z by f1(x,y) and reduced the number of variables in equation (1). It is a well known fact that a three dimensional region becomes a surface in the four dimensional space.What I would like to emphasize is that there is no surface restriction on the three dimensional region and parallel transportation of a three dimension vector should be quite "classical" in its mode.There should be no problem at all in adding or subtracting vectors at a distance.I would like you to consider the threads #40 ,#57 and #60
Links: https://www.physicsforums.com/showpost.php?p=2849247&postcount=40
https://www.physicsforums.com/showpost.php?p=2850358&postcount=57
https://www.physicsforums.com/showpost.php?p=2850394&postcount=60
2) The highlighted sentence towards the end of the first paragraph is a serious one in relation to four dimensional space-time . It stands out as a very strong argument.
3) In relation to what I have said in the first paragraph, if I distort the space-time surface slightly here and there but not at the starting point we may make the boundary conditions the same at the segment in the initial and final positions.
Obviously we end up with the same vector[with the same orientation,on the new surface].
Does it relate to curvature now?
Of course the matter may be defended by considering a small curve. Suppose we have a non-zero value of the Ricci tensor at some point on a small closed curve. We may still think of distorting the surface again to get the same orientation of the transported vector in the initial and final positions. If we try to make the surface too small we are in effect considering flat space-time.So what is the Ricci tensor measuring in reality? Probably this due to the fact that higher order terms are usually excluded from theory.Though it is inconvenient to include them,such exclusions may sometimes lead to problems[perhaps].
I have tried to reason out the problem in this way.As we move along the curve the Christoffel tensor changes according to the changing values of the metric coefficients. If we divide the curve into small segments the differential equations themselves are different over each segment(due to the changing values of the Christoffel Tensor). So the boundary conditions go on changing as we move along it and so on the last lap of the journey we may end up with different boundary conditions. This can of course change the orientation of the vector. Perhaps this is the reason .I thank you for the example.
[But then again if you refer to a chain of inertial states there is no problem at all]. I have a very strong point here.[Please refer to the attachment]
Now my further confusions[I am simply trying to get my own ideas clear]:
1)I would like to refer to three vectors now. We represent a four dimensional space-time surface by f(x,y,z,t)=0 --------------- (1)
We may split the four dimensional space into a product of two spaces--a three dimensional space consisting of the variables x,y and z and a time space.The three dimensional space cannot have a surface restriction. Say it had some restriction like z=f1(x,y) .Then we could have substituted the value of z by f1(x,y) and reduced the number of variables in equation (1). It is a well known fact that a three dimensional region becomes a surface in the four dimensional space.What I would like to emphasize is that there is no surface restriction on the three dimensional region and parallel transportation of a three dimension vector should be quite "classical" in its mode.There should be no problem at all in adding or subtracting vectors at a distance.I would like you to consider the threads #40 ,#57 and #60
Links: https://www.physicsforums.com/showpost.php?p=2849247&postcount=40
https://www.physicsforums.com/showpost.php?p=2850358&postcount=57
https://www.physicsforums.com/showpost.php?p=2850394&postcount=60
2) The highlighted sentence towards the end of the first paragraph is a serious one in relation to four dimensional space-time . It stands out as a very strong argument.
3) In relation to what I have said in the first paragraph, if I distort the space-time surface slightly here and there but not at the starting point we may make the boundary conditions the same at the segment in the initial and final positions.
Obviously we end up with the same vector[with the same orientation,on the new surface].
Does it relate to curvature now?
Of course the matter may be defended by considering a small curve. Suppose we have a non-zero value of the Ricci tensor at some point on a small closed curve. We may still think of distorting the surface again to get the same orientation of the transported vector in the initial and final positions. If we try to make the surface too small we are in effect considering flat space-time.So what is the Ricci tensor measuring in reality? Probably this due to the fact that higher order terms are usually excluded from theory.Though it is inconvenient to include them,such exclusions may sometimes lead to problems[perhaps].
Attachments
Last edited: