- #1
ozkan12
- 149
- 0
Let $\{p_n\}$ be a nonnegative nonincreasing sequence and converges to $p \ge 0$. Let $f : [0,\infty)\to[0,\infty)$ be a nondecreasing function. So, since f is a nondecreasing function, $f(p_n)>f(p)>0$. How did this happen?
Last edited by a moderator: