MHB Definite Integral challenge #2

AI Thread Summary
The integral challenge involves evaluating the definite integral from π/2 to 5π/2 of the function e^(arctan(sin x)) divided by the sum of e^(arctan(sin x)) and e^(arctan(cos x)). The solution is approached by breaking the integral into two parts, I1 and I2, and applying symmetry transformations. Through these transformations, it is determined that I1 equals 5π/4 and I2 equals π/4. The final result of the integral is calculated to be π. The discussion highlights the elegance of the solution and the collaborative effort in solving the problem.
Saitama
Messages
4,244
Reaction score
93
Evaluate:
$$\Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}$$
 
Last edited:
Mathematics news on Phys.org
Pranav said:
Evaluate:
$$\Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}$$

$$\begin{aligned} \Large I & = \Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}\;{dx} \\& = \Large \int_{0}^{5\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}-\int_{0}^{\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}} \\& \Large= I_{1}-I_{2} \end{aligned}$$

Let $\displaystyle x \mapsto \frac{5\pi}{2}-x$ then $\displaystyle 2I_1 = \frac{5\pi}{2}$ thus $\displaystyle I_1 = \frac{5\pi}{4}$. Let $\displaystyle x \mapsto \frac{\pi}{2}-x$ then $\displaystyle 2I_2 = \frac{\pi}{2}$ thus $\displaystyle I_2 = \frac{\pi}{4}$. Thus $\displaystyle I = I_1-I_2 = \frac{5\pi}{4}-\frac{\pi}{4} = \pi$.
 
Last edited by a moderator:
Prometheus said:
$$\begin{aligned} \Large I & = \Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}\;{dx} \\& = \Large \int_{0}^{5\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}-\int_{0}^{\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}} \\& \Large= I_{1}-I_{2} \end{aligned}$$

Let $\displaystyle x \mapsto \frac{5\pi}{2}-x$ then $\displaystyle 2I_1 = \frac{5\pi}{2}$ thus $\displaystyle I_1 = \frac{5\pi}{4}$. Let $\displaystyle x \mapsto \frac{\pi}{2}-x$ then $\displaystyle 2I_2 = \frac{\pi}{2}$ thus $\displaystyle I_2 = \frac{\pi}{4}$. Thus $\displaystyle I = I_1-I_2 = \frac{5\pi}{4}-\frac{\pi}{4} = \pi$.

Brilliant Prometheus! :cool:

Thanks for your participation. :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top