01010011
- 48
- 0
Hi,
I'm I on the right track here?
Evaluate the definite integral, if it exists
\int^{2}_{0}\stackrel{dx/}{(2x-3)^2}
Let u = 2x-3
du = 2dx
1/2du = dx
1/2\int^{2}_{0}\stackrel{du/}{u^2}
going back to our original u substitution: u = 2x - 3
= 2(0) - 3 = -3
= 2(2) - 3 = 1
1/2\int^{-3}_{1}\stackrel{du/}{u^2}
1/2\int^{-3}_{1}\stackrel{du/}{(u^3)/3}
(1/6) x du/(u)^3
[(1/6) x du/(1)^3] - [(1/6) x du/(-3)^3]
[(1/6) x du] - [(1/6) x du/(-27)]
I'm I on the right track here?
Homework Statement
Evaluate the definite integral, if it exists
Homework Equations
\int^{2}_{0}\stackrel{dx/}{(2x-3)^2}
The Attempt at a Solution
Let u = 2x-3
du = 2dx
1/2du = dx
1/2\int^{2}_{0}\stackrel{du/}{u^2}
going back to our original u substitution: u = 2x - 3
= 2(0) - 3 = -3
= 2(2) - 3 = 1
1/2\int^{-3}_{1}\stackrel{du/}{u^2}
1/2\int^{-3}_{1}\stackrel{du/}{(u^3)/3}
(1/6) x du/(u)^3
[(1/6) x du/(1)^3] - [(1/6) x du/(-3)^3]
[(1/6) x du] - [(1/6) x du/(-27)]