- #1
PhysicsRock
- 117
- 18
- TL;DR Summary
- Why do we define manifolds with boundary differently from the topological definition of the boundary?
In differential geometry, we typically define the boundary ##\partial M## of a manifold ##M## as all ##p \in M## for which there exists a chart ##(U,\varphi), p \in U## such that ##\varphi(p) \in \partial\mathbb{H}^n := \{ x \in \mathbb{R}^n : x^n = 0 \}##. Consequently, we also demand that ##M## is locally homeomorphic to ##\mathbb{H}^n := \{ x \in \mathbb{R}^n : x^n \geq 0 \}##, instead of ##\mathbb{R}^n## as in the (usually) previously encountered definitions of topological manifolds.
For such topological manifolds, the boundary is typically defined to be the closure of ##M## without it's interior, i.e. ##\partial M_{top} = \bar{M} \setminus \mathring{M}##. Perhaps I'm missing something, but theoretically I don't see any restrictions in this definition that would demand that boundary points are to be mapped onto the boundary of ##\mathbb{H}^n##.
My question is, why do we make that alteration?
For such topological manifolds, the boundary is typically defined to be the closure of ##M## without it's interior, i.e. ##\partial M_{top} = \bar{M} \setminus \mathring{M}##. Perhaps I'm missing something, but theoretically I don't see any restrictions in this definition that would demand that boundary points are to be mapped onto the boundary of ##\mathbb{H}^n##.
My question is, why do we make that alteration?