I Definition of stress-energy tensor

Silviu
Messages
612
Reaction score
11
Hello! Why is the stress energy tensor defined as a (2 0) tensor? I understand that it needs 2 one-forms as arguments, but using the metric, can't we bring it to (1 1) or (0 2)? So is there is any physical or mathematical reason why it is defined as (2 0), or it is equally right to define it as (1 1) or (2 0)?
 
Physics news on Phys.org
You can use the metric to raise and lower indices on any rank 2 tensor (including the stress-energy tensor), so you can write it as a (2,0), (1,1), or (0,2) tensor. What made you think you couldn't?
 
@Silviu: What exact definition of this tensor do you mean? (Dă, te rog, sursa / provide the exact source)
 
As already stated by the members above, you can raise and lower it the indices on the stress energy tensor as you like. Why the usual stress tensor ##T^{\alpha \beta}## has two upper (or lower indices)? Maybe because the way they are sometimes defined. For a perfect fluid its defined as $$T^{\alpha\beta}=(\rho+P)u^\alpha u^\beta+Pg^{\alpha\beta}.$$
Where:
##u## is the four velocity
##\rho## is themass/energy density
##P## is Pressure
Edit: Definition is for a metric of signature ##(-+++)##
 
Last edited:
  • Like
Likes vanhees71
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Back
Top