A Derivation of QM limit of QFT in "QFT and the SM" by Schwartz

Hill
Messages
735
Reaction score
575
TL;DR Summary
How the time derivative moved into the braket?
In this derivation, a basis of one-particle states ##\langle x|=\langle \vec x,t|## is expressed with the field operator, $$\langle x|=\langle 0| \phi (\vec x, t)$$
"Then, a Schrodinger picture wavefunction is $$\psi (x)=\langle x| \psi \rangle$$
which satisfies $$i \partial _t \psi (x) = i \partial _t \langle 0| \phi (\vec x, t)|\psi \rangle = i \langle 0| \partial _t \phi (\vec x, t)| \psi \rangle$$

I need help to understand why the time derivative is applied to the field ##\phi## and not to the state vector ##\psi##.
 
Physics news on Phys.org
Hill said:
I need help to understand why the time derivative is applied to the field ##\phi## and not to the state vector ##\psi##.
Because the equation is written in the Heisenberg picture, where observables depend on time and state does not depend on time.
 
Demystifier said:
Because the equation is written in the Heisenberg picture, where observables depend on time and state does not depend on time.
Thank you.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top