- #1
redtree
- 331
- 14
- TL;DR Summary
- Derivation from the Fourier transform
I am trying to understand the Helmholtz equation, where the Helmholtz equation can be considered as the time-independent form of the wave equation. It seems to me that the Helmholtz equation can be derived from the Fourier transform, such that it is part of a larger set of equations of varying order.
Given a differentiable function ##f(\vec{x})##, I note the differentiation property of the Fourier transform,
\begin{equation}
\begin{split}
\partial_{\vec{x}} f(\vec{x}) &= \partial_{\vec{x}} \int_{\mathbb{R}} e^{2 \pi i \vec{k} \cdot \vec{x}} \hat{f}(\vec{k}) d\vec{k}
\\
&= \int_{\mathbb{R}} \partial_{\vec{x}} e^{2 \pi i \vec{k} \cdot \vec{x}} \hat{f}(\vec{k}) d\vec{k}
\\
&= \int_{\mathbb{R}} 2 \pi i \vec{k} e^{2 \pi i \vec{k} \cdot \vec{x}} \hat{f}(\vec{k}) d\vec{k}
\\
&= \mathscr{F}^{-1} \left[2 \pi i \vec{k} \hat{f}(\vec{k}) \right]
\end{split}
\end{equation}
The converse is also true, such that
\begin{equation}
\begin{split}
2 \pi i \vec{k} \hat{f}(\vec{k}) &= \mathscr{F}\left[\partial_{\vec{x}} f(\vec{x}) \right]
\\
&= \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( \partial_{\vec{x}} f(\vec{x}) \bigg) d\vec{x}
\end{split}
\end{equation}
Regarding ##2 \pi i \vec{k} \hat{f}(\vec{k})##, I also note the following:
\begin{equation}
\begin{split}
2 \pi i \vec{k} \hat{f}(\vec{k}) &= 2 \pi i \vec{k} \mathscr{F}\left[f(\vec{x}) \right]
\\
&= 2 \pi i \vec{k} \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} f(\vec{x}) d\vec{x}
\\
&= \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( 2 \pi i \vec{k} f(\vec{x}) \bigg) d\vec{x}
\end{split}
\end{equation}Combining these last two equations,
\begin{equation}
\begin{split}
\int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( \partial_{\vec{x}} f(\vec{x}) \bigg) d\vec{x}&= \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( 2 \pi i \vec{k} f(\vec{x}) \bigg) d\vec{x}
\end{split}
\end{equation}
which simplifies to
\begin{equation}
\begin{split}
\vec{k} f(\vec{x}) &= -\frac{i}{(2 \pi) } \partial_{\vec{x}} f(\vec{x})
\end{split}
\end{equation}
This same holds true for any ##n##-th derivative, such that
\begin{equation}
\begin{split}
\big(\vec{k} \big)^n f(\vec{x}) &= \left(-\frac{i}{2 \pi} \right)^n \big(\partial_{\vec{x}} \big)^n f(\vec{x})
\end{split}
\end{equation}
Setting ##n=2## produces the Helmholtz equation
\begin{equation}
\begin{split}
\big( \vec{k} \big)^2 f(\vec{x}) &= -\frac{1}{(2 \pi)^2} \big( \partial_{\vec{x}} \big)^2 f(\vec{x})
\end{split}
\end{equation}
which would make the Helmholtz equation the member of order ##n=2## of a larger set of Helmholtz-type equations
Given a differentiable function ##f(\vec{x})##, I note the differentiation property of the Fourier transform,
\begin{equation}
\begin{split}
\partial_{\vec{x}} f(\vec{x}) &= \partial_{\vec{x}} \int_{\mathbb{R}} e^{2 \pi i \vec{k} \cdot \vec{x}} \hat{f}(\vec{k}) d\vec{k}
\\
&= \int_{\mathbb{R}} \partial_{\vec{x}} e^{2 \pi i \vec{k} \cdot \vec{x}} \hat{f}(\vec{k}) d\vec{k}
\\
&= \int_{\mathbb{R}} 2 \pi i \vec{k} e^{2 \pi i \vec{k} \cdot \vec{x}} \hat{f}(\vec{k}) d\vec{k}
\\
&= \mathscr{F}^{-1} \left[2 \pi i \vec{k} \hat{f}(\vec{k}) \right]
\end{split}
\end{equation}
The converse is also true, such that
\begin{equation}
\begin{split}
2 \pi i \vec{k} \hat{f}(\vec{k}) &= \mathscr{F}\left[\partial_{\vec{x}} f(\vec{x}) \right]
\\
&= \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( \partial_{\vec{x}} f(\vec{x}) \bigg) d\vec{x}
\end{split}
\end{equation}
Regarding ##2 \pi i \vec{k} \hat{f}(\vec{k})##, I also note the following:
\begin{equation}
\begin{split}
2 \pi i \vec{k} \hat{f}(\vec{k}) &= 2 \pi i \vec{k} \mathscr{F}\left[f(\vec{x}) \right]
\\
&= 2 \pi i \vec{k} \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} f(\vec{x}) d\vec{x}
\\
&= \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( 2 \pi i \vec{k} f(\vec{x}) \bigg) d\vec{x}
\end{split}
\end{equation}Combining these last two equations,
\begin{equation}
\begin{split}
\int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( \partial_{\vec{x}} f(\vec{x}) \bigg) d\vec{x}&= \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( 2 \pi i \vec{k} f(\vec{x}) \bigg) d\vec{x}
\end{split}
\end{equation}
which simplifies to
\begin{equation}
\begin{split}
\vec{k} f(\vec{x}) &= -\frac{i}{(2 \pi) } \partial_{\vec{x}} f(\vec{x})
\end{split}
\end{equation}
This same holds true for any ##n##-th derivative, such that
\begin{equation}
\begin{split}
\big(\vec{k} \big)^n f(\vec{x}) &= \left(-\frac{i}{2 \pi} \right)^n \big(\partial_{\vec{x}} \big)^n f(\vec{x})
\end{split}
\end{equation}
Setting ##n=2## produces the Helmholtz equation
\begin{equation}
\begin{split}
\big( \vec{k} \big)^2 f(\vec{x}) &= -\frac{1}{(2 \pi)^2} \big( \partial_{\vec{x}} \big)^2 f(\vec{x})
\end{split}
\end{equation}
which would make the Helmholtz equation the member of order ##n=2## of a larger set of Helmholtz-type equations