Derivative of y = sin x * cos x

TristanH
Messages
12
Reaction score
0
I'm working through Kline's Calculus book, and am at the chapter on Integration on Differentiation of Trig Functions. A question asks to find the derivative of:

(I've labeled all equations for easy reference)

(1) y = sin x * cos x

unlike the solution guide which advocates using the product rule, I decided to use the product to sum trig identity and work from there. Unfortunately it looks like my answer is incorrect, and I'd like to know why.

So, using the trig identity:

(2) sin a * cos b = (sin(a+b) + sin(a-b)) / 2

I computed:

(3) y = (sin(x + x) + sin(x - x)) / 2

then,

(4) y = (sin(2x) + sin(0)) / 2

which simplifies to:

(5) y = (sin(2x)) / 2

Then By the chain rule:

(6) y' = (2 * cos(2x)) / 2

which yields:

(7) y' = cos(2x)

yet the solution guide has

(8) y' = -sin^2(x) + cos^2(x) which is clearly different.

Where did I go wrong?
 
Last edited:
Physics news on Phys.org
They are the same.

\cos (2x) = \cos^2 (x) - \sin^2(x).
 
FYI - I redid the problem using the product rule and got the same answer as the text. However, why does the identity method not work?
 
Defender - so it is! I missed that one. Thanks!
 
Make it easier: \sin x\cos x=\frac{\sin{2x}}{2}
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top