I Derivatives for a density operator

Haorong Wu
Messages
417
Reaction score
90
TL;DR Summary
How to properly calculate the derivatives for a density operator?
Hi. Suppose I have a state ##\left | \psi (0)\right >=\sum_m C_m \left | m\right >## evolving as $$\left | \psi (0+dz)\right>=\left | \psi (0)\right >+dz \sum_iD_i\left | i\right >=\sum_m C_m \left | m\right >+dz \sum_iD_i\left | i\right >=\sum_m( C_m+dz D_m)\left |m\right >.$$
Then the density operator at ##0+dz## is \begin{align}\rho(0+dz)&=\left | \psi (0+dz)\right>\left< \psi (0+dz)\right|=\sum_{mn}( C_m+dz D_m)( C^*_n+dz D^*_n)\left |m\right >\left< n\right|\nonumber \\&=\sum_{mn}(C_mC^*_n+dz(D_mC^*_n+C_mD^*_n)+dz^2D_mD^*_n)\left |m\right >\left< n\right|.\end{align}

I have seen in a paper, Roux F S. Infinitesimal-propagation equation for decoherence of an orbital-angular-momentum-entangled biphoton state in atmospheric turbulence[J]. Physical Review A, 2011, 83(5): 053822, that the author take the derivative of the density matrix as $$\partial_z \rho(z)=\sum_{mn}(D_mC^*_n+C_mD^*_n)\left |m\right >\left< n\right|,$$ i.e., terms with ##dz##.

Then when the author tries to recover the density matrix at some point ##z##, the result is given by just integrating the above derivative.

My question is from ##\rho(0+dz)=\left | \psi (0+dz)\right>\left< \psi (0+dz)\right|##, clearly, its a pure state, but if we calculate it from the derivative ##\rho(0+dz)=\rho(0)+dz \partial_z \rho(z)##, then it is not pure since terms with ##dz^2## is lost. Why there is a conflict? Should we discard terms with ##dz^2## or not?

Thanks!
 
Physics news on Phys.org
Haorong Wu said:
then it is not pure since terms with ##dz^2## is lost. Why there is a conflict?
A more correct way to do it is to avoid dealing with infinitesimal numbers ##dz##. The truncated Taylor expansion
$$\rho(z) = \rho(0)+\left.\frac{\partial\rho(z)}{\partial z}\right|_{z=0} z+{\cal O}(z^2)$$
is not necessarily pure. Only the full Taylor expansion is guaranteed to be pure. But if you are doing approximation for small (but finite!) ##z##, then a truncated expansion gives you approximate purity. The nonpurity is ##{\cal O}(z^2)##, which is consistent with expansion up to the terms linear in ##z##.

An apparent conflict in your computation arises from the fact that ##\rho(0+z)=|\psi(0+z)\rangle\langle\psi(0+z)|## is exact equality, while ##\rho(0+z)=\rho(0)+z\rho'(0)## is only an approximation. But to see that, you must work with finite ##z## (not with infinitesimal ##dz##, which, as a number, is not a well defined object).
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...

Similar threads

Back
Top