- #1
jag
- 13
- 4
- Homework Statement
- Derive the relationship between Ricci scalar and Gauss curvature in 2-surface R = 2K
- Relevant Equations
- Ricci scalar and Gauss curvature in 2-surface, ##R=2K##, where ##K \equiv \frac {R_{1212}} {g}##; given the Ricci tensor ##R_{\alpha \beta} \equiv R^\lambda_{\, \alpha \lambda \beta}## and Ricci scalar ##R \equiv R^{\alpha}_{\, \alpha}##.
Hi,
I'm self-learning some physics topics and came across an exercise to derive the relationship between Ricci scalar and Gauss curvature in 2-surface, ##R=2K##, where ##K \equiv \frac {R_{1212}} {g}##; given the Ricci tensor ##R_{\alpha \beta} \equiv R^\lambda_{\, \alpha \lambda \beta}## and Ricci scalar ##R \equiv R^{\alpha}_{\, \alpha}##.
My attempt:
Please kindly let me know if my thought process is incorrect. Looking for any kind of help. Thank you.
I'm self-learning some physics topics and came across an exercise to derive the relationship between Ricci scalar and Gauss curvature in 2-surface, ##R=2K##, where ##K \equiv \frac {R_{1212}} {g}##; given the Ricci tensor ##R_{\alpha \beta} \equiv R^\lambda_{\, \alpha \lambda \beta}## and Ricci scalar ##R \equiv R^{\alpha}_{\, \alpha}##.
My attempt:
- ##R = R^{\alpha}_{\, \alpha}##. The left-hand side of the equation remains the same in the next steps.
- ##\frac {R^{\alpha}_{\, \alpha} g_{\alpha \alpha}} {g_{\alpha \alpha}}##
- ##\frac {R_{\alpha \alpha}} {g_{\alpha \alpha}}##
- ##\frac {R^\lambda_{\, \alpha \lambda \alpha}} {g_{\alpha \alpha}}## => using Ricci tensor definition
- ##\frac {R^\lambda_{\, \alpha \lambda \alpha} g_{\lambda \lambda}} {g_{\lambda \lambda}g_{\alpha \alpha}}##
- ##\frac {R_{\lambda \alpha \lambda \alpha}} {g_{\lambda \lambda}g_{\alpha \alpha}}##
Please kindly let me know if my thought process is incorrect. Looking for any kind of help. Thank you.