- #1
chillaxin
- 5
- 0
A long straight conducting rod (or wire) carries a linear charge density of +2.0uC/m. This rod is totally enclosed within a thin cylindrical shell of radius R, which carries a linear charge density of -2.0uC/m.
A) Construct a Gaussian cylindrical surface between the rod and the shell to derive then electric field in the inner space as a function of the distance from the center of the rod.
B) Construct a Gaussian cylindrical surface outside both the rod and the shell to calculate the electric field outside the shell.
This is what i have so far.
E=q/4piEor^2
E=+2.0uC/m / 4pi8.85x10^-12(-2uC/m)^2
E=4.5x10^9Nm^2/C
A) Construct a Gaussian cylindrical surface between the rod and the shell to derive then electric field in the inner space as a function of the distance from the center of the rod.
B) Construct a Gaussian cylindrical surface outside both the rod and the shell to calculate the electric field outside the shell.
This is what i have so far.
E=q/4piEor^2
E=+2.0uC/m / 4pi8.85x10^-12(-2uC/m)^2
E=4.5x10^9Nm^2/C