- #1
deuteron
- 60
- 13
- TL;DR Summary
- .
We know that the magnetic field can be written in the following way:
$$\nabla_{\vec r}\times \vec B(\vec r) =\frac 1 c \nabla_{\vec r} \times\int d^3\vec r_q\ \vec j(\vec r_q) \times \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3}$$
and, using the ##BAC-CAB## identity, the curl of this becomes:
$$=\frac 1 c \int d^3\vec r_q\ \vec j(\vec r_q) (\nabla_{\vec r}\cdot \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3} ) \ -\ \frac 1c \int d^3r_q\ \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3} ( \nabla_{\vec r} \cdot \vec j(\vec r_q) ) $$
With the property, ##\nabla_{\vec r} \cdot \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3}= 4\pi\delta^3(\vec r-\vec r_q)##, we can write this as:
$$= \frac 1 c \int d^3\vec r_q\ \vec j(\vec r_q)\ 4\pi\ \delta^3(\vec r-\vec r_q) \ -\ \frac 1c \int d^3\vec r_q\ \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3} (\nabla_{\vec r}\cdot \vec j(\vec r_q))$$
from here, what is usually done is to obsevre the second integral, and rewrite the integrand as:
$$(\nabla_{\vec r}\cdot \vec j(\vec r_q))\frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3}= (\vec j(\vec r_q) \cdot \nabla_{\vec r}) \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3} = -(\vec j(\vec r_q) \cdot \nabla_{\vec r_q} ) \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3}$$
and from here, using partial integration and continuity equation for magnetostatics, one get ##0## for the integrand, and thus the integral
What I would have done is to say, since ##\nabla_{\vec r}## is a differentiation with respect to ##\vec r##, applying it to ##\vec j(\vec r_q)## would give ##0## since ##\vec j## is not dependent on ##\vec r##.
I understand that if this were true, then people wouldn't get in the trouble to come to ##0## with the above steps, but what I don't understand is the reason why my explanation is false. How can we say that ##\nabla_{\vec r}## acts on ##\frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3}##, when it can also be interpreted as acting on ##\vec j(\vec r_q)##?
$$\nabla_{\vec r}\times \vec B(\vec r) =\frac 1 c \nabla_{\vec r} \times\int d^3\vec r_q\ \vec j(\vec r_q) \times \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3}$$
and, using the ##BAC-CAB## identity, the curl of this becomes:
$$=\frac 1 c \int d^3\vec r_q\ \vec j(\vec r_q) (\nabla_{\vec r}\cdot \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3} ) \ -\ \frac 1c \int d^3r_q\ \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3} ( \nabla_{\vec r} \cdot \vec j(\vec r_q) ) $$
With the property, ##\nabla_{\vec r} \cdot \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3}= 4\pi\delta^3(\vec r-\vec r_q)##, we can write this as:
$$= \frac 1 c \int d^3\vec r_q\ \vec j(\vec r_q)\ 4\pi\ \delta^3(\vec r-\vec r_q) \ -\ \frac 1c \int d^3\vec r_q\ \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3} (\nabla_{\vec r}\cdot \vec j(\vec r_q))$$
from here, what is usually done is to obsevre the second integral, and rewrite the integrand as:
$$(\nabla_{\vec r}\cdot \vec j(\vec r_q))\frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3}= (\vec j(\vec r_q) \cdot \nabla_{\vec r}) \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3} = -(\vec j(\vec r_q) \cdot \nabla_{\vec r_q} ) \frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3}$$
and from here, using partial integration and continuity equation for magnetostatics, one get ##0## for the integrand, and thus the integral
What I would have done is to say, since ##\nabla_{\vec r}## is a differentiation with respect to ##\vec r##, applying it to ##\vec j(\vec r_q)## would give ##0## since ##\vec j## is not dependent on ##\vec r##.
I understand that if this were true, then people wouldn't get in the trouble to come to ##0## with the above steps, but what I don't understand is the reason why my explanation is false. How can we say that ##\nabla_{\vec r}## acts on ##\frac {\vec r-\vec r_q}{|\vec r-\vec r_q|^3}##, when it can also be interpreted as acting on ##\vec j(\vec r_q)##?