MHB Determinant of Block Matrices: How Do Non-Zero Blocks Affect the Determinant?

Dethrone
Messages
716
Reaction score
0
View attachment 4098

I don't quite follow this, can anyone explain?
 

Attachments

  • Confusion.PNG
    Confusion.PNG
    8.5 KB · Views: 102
Physics news on Phys.org
Hi Rido12. I haven't actually used this fact but it appears what is going on it that we are blocking the matrix into this form:

$$\left(\begin{array}{cc}A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right)$$

More particularly we are choosing $A_{12}=0$ so we end up with a lower triangular block matrix that looks like this:

$$\left(\begin{array}{cc}A_{11} &0 \\ A_{21} & A_{22} \end{array}\right)$$

So, $\text{det}\left(\begin{array}{cc}A_{11} &0 \\ A_{21} & A_{22} \end{array}\right)=\text{det}(A_{11}A_{22}-0A_{21})=\text{det}(A_{11}A_{22})=\text{det}(A_{11})\text{det}(A_{22})$

I think that's the basic argument. Here is a link with some useful info on it as well. :)
 
Hi Jameson! :D

Thanks for the reply - so it appears that the blocks don't have to be of the same size? By that, I mean $A_{11}$ appears to be of size $2$ by $2$ while $A_{21}$ seems to be of $3$ by $2$. If so, this seems to be a pretty useful tool! (Cool)
 
Rido12 said:
Hi Jameson! :D

Thanks for the reply - so it appears that the blocks don't have to be of the same size? By that, I mean $A_{11}$ appears to be of size $2$ by $2$ while $A_{21}$ seems to be of $3$ by $2$. If so, this seems to be a pretty useful tool! (Cool)

Hey Rido! ;)

See here.

So the block matrices can be of any size, but either right top, or left bottom has to be zero.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top