- #1
Lambda96
- 206
- 72
- Homework Statement
- See Screenshot
- Relevant Equations
- none
Hi,
I am not quite sure whether I have solved the following problem correctly:
I have now set up Lagrangian in general, i.e.
$$L=T-V=\frac{1}{2}m(\dot{x}^2+\dot{y}^2)-mgz$$
After that I imagined how ##x##,##y## and ##z## must look like and got the following:
$$x=\beta \cos^2(\alpha r) \cos(\theta)$$
$$y=\beta \cos^2(\alpha r) \sin(\theta)$$
$$z=\beta \cos^2(\alpha r)$$Then I determined ##\dot{x}## and ##\dot{y}## or rather ##\dot{x}^2## and ##\dot{x}^2##.
$$\dot{x}=-\dot{\theta} \beta \cos^2(\alpha r) \sin(\theta) , \quad \dot{x}^2=\dot{\theta}^2 \beta^2 \cos^4(\alpha r) \sin^2(\theta)$$
$$\dot{y}=\dot{\theta} \beta \cos^2(\alpha r) \cos(\theta) , \quad \dot{y}^2=\dot{\theta}^2 \beta^2 \cos^4(\alpha r) \cos^2(\theta)$$
Then I put everything into the Lagrangian
$$L=\frac{1}{2}m\Bigl[ \dot{\theta}^2 \beta^2 \cos^4(\alpha r) \sin^2(\theta) +\dot{\theta}^2 \beta^2 \cos^4(\alpha r) \cos^2(\theta) \Bigr]-mg\beta \cos^2(\alpha r)$$
$$L=\frac{1}{2}m\dot{\theta}^2 \beta^2 \cos^4(\alpha r)-mg\beta \cos^2(\alpha r)$$
Unfortunately, however, my Lagrangian now depends on ##r## and ##\dot{theta}## and not ##r## and ##\theta##.
I am not quite sure whether I have solved the following problem correctly:
I have now set up Lagrangian in general, i.e.
$$L=T-V=\frac{1}{2}m(\dot{x}^2+\dot{y}^2)-mgz$$
After that I imagined how ##x##,##y## and ##z## must look like and got the following:
$$x=\beta \cos^2(\alpha r) \cos(\theta)$$
$$y=\beta \cos^2(\alpha r) \sin(\theta)$$
$$z=\beta \cos^2(\alpha r)$$Then I determined ##\dot{x}## and ##\dot{y}## or rather ##\dot{x}^2## and ##\dot{x}^2##.
$$\dot{x}=-\dot{\theta} \beta \cos^2(\alpha r) \sin(\theta) , \quad \dot{x}^2=\dot{\theta}^2 \beta^2 \cos^4(\alpha r) \sin^2(\theta)$$
$$\dot{y}=\dot{\theta} \beta \cos^2(\alpha r) \cos(\theta) , \quad \dot{y}^2=\dot{\theta}^2 \beta^2 \cos^4(\alpha r) \cos^2(\theta)$$
Then I put everything into the Lagrangian
$$L=\frac{1}{2}m\Bigl[ \dot{\theta}^2 \beta^2 \cos^4(\alpha r) \sin^2(\theta) +\dot{\theta}^2 \beta^2 \cos^4(\alpha r) \cos^2(\theta) \Bigr]-mg\beta \cos^2(\alpha r)$$
$$L=\frac{1}{2}m\dot{\theta}^2 \beta^2 \cos^4(\alpha r)-mg\beta \cos^2(\alpha r)$$
Unfortunately, however, my Lagrangian now depends on ##r## and ##\dot{theta}## and not ##r## and ##\theta##.