MHB Determine the ratio of the base to the perimeter.

AI Thread Summary
The isosceles triangle has two equal sides of length 9x + 3, and its perimeter is 30x + 10. The base is calculated as b = 12x + 4 after solving the equation for the perimeter. The ratio of the base to the perimeter simplifies to (6x + 2) / (15x + 5). For the triangle to exist, x must be strictly greater than -1/3.
eleventhxhour
Messages
73
Reaction score
0
8) An isosceles triangle has two sides of length $$9x+3$$. The perimeter of the triangle is $$30x+10$$

a) Determine the ratio of the base to the perimeter, in simplified form. State the restriction on $$x$$

Thanks for your help!
 
Mathematics news on Phys.org
First, let's find the base. We know the two given equal sides plus the base $b$ is equal to the perimeter:

$$2(9x+3)+b=30x+10$$

So, we need to solve this for $b$, to have $b$ in terms of $x$...
 
eleventhxhour said:
8) An isosceles triangle has two sides of length $$9x+3$$. The perimeter of the triangle is $$30x+10$$

a) Determine the ratio of the base to the perimeter, in simplified form. State the restriction on $$x$$

Thanks for your help!

The base has length $b=30x+10-2(9x+3)=12x+4$. So the ratio of the base to the perimeter is $\frac{12x+4}{30x+10}=\frac{6x+2}{15x+5}$. We want the triangle to exist so the perimeter must be positive. So the restriction is that $x$ is (strictly) greater than $\frac{-1}{3}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top