- #1
Math100
- 802
- 222
- Homework Statement
- Determine the set of odd primes ## p ## for which ## 23 ## is a quadratic residue.
- Relevant Equations
- If ## p ## and ## q ## are distinct odd primes, then ## (p|q)=(q|p) ##, if either ## p\equiv 1\pmod {4} ## or ## q\equiv 1\pmod {4} ##, and ## -(q|p) ##, if ## p\equiv q\equiv 3\pmod {4} ##.
Let ## p ## be an odd prime.
Then ## 23 ## is a quadratic residue modulo ## p ## if ## (23|p)=1 ##.
Applying the Quadratic Reciprocity Law produces:
## (23|p)=(p|23) ## if ## p\equiv 1\pmod {4} ##
## (23|p)=-(p|23) ## if ## p\equiv 3\pmod {4} ##.
Now we consider two cases.
Case #1: Suppose ## p\equiv 1\pmod {4} ##.
Then ## (23|p)=(p|23) ##.
Observe that ## (23|p)=1 ## if ## p\equiv 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18\pmod {23} ##.
By considering the quadratic residues modulo ## 23 ## and ## p\equiv 1\pmod {4} ##, we have ## p\equiv 1\pmod {92} ##.
Thus ## p\equiv 1\pmod {92}\in\left \{ 1, 9, 13, 25, 29, 41, 49, 73, 77, 81, 85 \right \} ##.
Case #2: Suppose ## p\equiv 3\pmod {4} ##.
Then ## (23|p)=-(p|23) ##.
Observe that ## (23|p)=1 ## if ## p\equiv 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22\pmod {23} ##.
As in case #1, we consider ## p\equiv 1\pmod {92} ##.
Thus ## p\equiv 1\pmod {92}\in\left \{ 7, 11, 15, 19, 43, 51, 63, 67, 79, 83, 91 \right \} ##.
Therefore, the set of odd primes ## p ## for which ## 23 ## is a quadratic residue is
## \left \{ 1, 7, 9, 11, 13, 15, 19, 25, 29, 41, 43, 49, 51, 63, 67, 73, 77, 79, 81, 83, 85, 91 \right \} ##.
Then ## 23 ## is a quadratic residue modulo ## p ## if ## (23|p)=1 ##.
Applying the Quadratic Reciprocity Law produces:
## (23|p)=(p|23) ## if ## p\equiv 1\pmod {4} ##
## (23|p)=-(p|23) ## if ## p\equiv 3\pmod {4} ##.
Now we consider two cases.
Case #1: Suppose ## p\equiv 1\pmod {4} ##.
Then ## (23|p)=(p|23) ##.
Observe that ## (23|p)=1 ## if ## p\equiv 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18\pmod {23} ##.
By considering the quadratic residues modulo ## 23 ## and ## p\equiv 1\pmod {4} ##, we have ## p\equiv 1\pmod {92} ##.
Thus ## p\equiv 1\pmod {92}\in\left \{ 1, 9, 13, 25, 29, 41, 49, 73, 77, 81, 85 \right \} ##.
Case #2: Suppose ## p\equiv 3\pmod {4} ##.
Then ## (23|p)=-(p|23) ##.
Observe that ## (23|p)=1 ## if ## p\equiv 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22\pmod {23} ##.
As in case #1, we consider ## p\equiv 1\pmod {92} ##.
Thus ## p\equiv 1\pmod {92}\in\left \{ 7, 11, 15, 19, 43, 51, 63, 67, 79, 83, 91 \right \} ##.
Therefore, the set of odd primes ## p ## for which ## 23 ## is a quadratic residue is
## \left \{ 1, 7, 9, 11, 13, 15, 19, 25, 29, 41, 43, 49, 51, 63, 67, 73, 77, 79, 81, 83, 85, 91 \right \} ##.