- #1
knowLittle
- 312
- 3
Let ##I## denote the interval ## [0, \infty )## . For each r ## \in I ## define:
##A_{r} = \{ (x,y), \in ##R x R : ## x^{2} +y^{2} = r^{2} \}##
##B_{r} = \{ (x,y), \in ##R x R : ## x^{2} +y^{2} \leq r^{2} \}##
##C_{r} = \{ ## ... ## : ... > r^{2} \} ##
a.) Determine ##\bigcup_{r\in I} A_{r} ## and ##\bigcap_{r \in I} A_{r}##
For case, ##A_{3}##
Is this right?
For, ##A_{3} = \{ (3,0), (0,3), (\sqrt(4.5), \sqrt(4.5)) , (\sqrt(4.6), \sqrt(4.4)), \dots \}##
Can I just list partitions of square roots that would give me 9?
##A_{r} = \{ (x,y), \in ##R x R : ## x^{2} +y^{2} = r^{2} \}##
##B_{r} = \{ (x,y), \in ##R x R : ## x^{2} +y^{2} \leq r^{2} \}##
##C_{r} = \{ ## ... ## : ... > r^{2} \} ##
a.) Determine ##\bigcup_{r\in I} A_{r} ## and ##\bigcap_{r \in I} A_{r}##
For case, ##A_{3}##
Is this right?
For, ##A_{3} = \{ (3,0), (0,3), (\sqrt(4.5), \sqrt(4.5)) , (\sqrt(4.6), \sqrt(4.4)), \dots \}##
Can I just list partitions of square roots that would give me 9?
Last edited: