- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! 
Let $U_1,U_2$ be vector subspaces of $\mathbb{R}^4$ that are defined as $$U_1=\begin{bmatrix}
\begin{pmatrix}
3\\
2\\
2\\
1
\end{pmatrix}, \begin{pmatrix}
3\\
3\\
2\\
1
\end{pmatrix}, \begin{pmatrix}
2\\
1\\
2\\
1
\end{pmatrix}
\end{bmatrix}, \ \ U_2=\begin{bmatrix}
\begin{pmatrix}
1\\
0\\
4\\
0
\end{pmatrix}, \begin{pmatrix}
2\\
3\\
2\\
3
\end{pmatrix}, \begin{pmatrix}
1\\
2\\
0\\
2
\end{pmatrix}
\end{bmatrix}$$
I want to determine for $U_1$, $U_2$, $U_1\cap U_2$,$ U_1+U_2$ a basis and the dimension. I have done the following:
The vectors of $U_1$ are linearly indepenendent, so a basis is the whole $U_1$ and so the dimension is $3$.
The same for $U_2$ : The vectors are linearly indepenendent, so a basis is the whole $U_2$ and so the dimension is $3$. For the intersection: Let $v\in U_1\cap U_2$ then $v\in U_1$, so $v=a(3,2,2,1)+b(3,3,2,1)+c(2,1,2,1)$ and $v\in U_2$, so $v=x(1,0,4,0)+y(2,3,2,3)+z(1,2,0,2)$.
We have that $$v-v=0 \Rightarrow a(3,2,2,1)+b(3,3,2,1)+c(2,1,2,1)-x(1,0,4,0)-y(2,3,2,3)-z(1,2,0,2)=(0,0,0,0)$$ So, we have to solve the system to find such $a,b,c,x,y,z$.
Is this correct? What about the dimension? (Wondering) For the sum we have that $\text{dim} (U_1+U_2)=\text{dim}(U_1)+\text{dim}(U_2)-\text{dim}(U_1\cap U_2)=3+3-\text{dim}(U_1\cap U_2)=6-\text{dim}(U_1\cap U_2)$, right? (Wondering)
Then to find a basis, do we take all the sums $u_1+u_2$, where $u_1\in U_1$ and $u_2\in U_2$ ? (Wondering) I want to find also vector subspace $W$ of $\mathbb{R}^4$ such that $U_1\oplus W=\mathbb{R}^4$. To find such a $W$ do we have to extend $U_1$ to a basis of $\mathbb{R}^4$ ? (Wondering)
Let $U_1,U_2$ be vector subspaces of $\mathbb{R}^4$ that are defined as $$U_1=\begin{bmatrix}
\begin{pmatrix}
3\\
2\\
2\\
1
\end{pmatrix}, \begin{pmatrix}
3\\
3\\
2\\
1
\end{pmatrix}, \begin{pmatrix}
2\\
1\\
2\\
1
\end{pmatrix}
\end{bmatrix}, \ \ U_2=\begin{bmatrix}
\begin{pmatrix}
1\\
0\\
4\\
0
\end{pmatrix}, \begin{pmatrix}
2\\
3\\
2\\
3
\end{pmatrix}, \begin{pmatrix}
1\\
2\\
0\\
2
\end{pmatrix}
\end{bmatrix}$$
I want to determine for $U_1$, $U_2$, $U_1\cap U_2$,$ U_1+U_2$ a basis and the dimension. I have done the following:
The vectors of $U_1$ are linearly indepenendent, so a basis is the whole $U_1$ and so the dimension is $3$.
The same for $U_2$ : The vectors are linearly indepenendent, so a basis is the whole $U_2$ and so the dimension is $3$. For the intersection: Let $v\in U_1\cap U_2$ then $v\in U_1$, so $v=a(3,2,2,1)+b(3,3,2,1)+c(2,1,2,1)$ and $v\in U_2$, so $v=x(1,0,4,0)+y(2,3,2,3)+z(1,2,0,2)$.
We have that $$v-v=0 \Rightarrow a(3,2,2,1)+b(3,3,2,1)+c(2,1,2,1)-x(1,0,4,0)-y(2,3,2,3)-z(1,2,0,2)=(0,0,0,0)$$ So, we have to solve the system to find such $a,b,c,x,y,z$.
Is this correct? What about the dimension? (Wondering) For the sum we have that $\text{dim} (U_1+U_2)=\text{dim}(U_1)+\text{dim}(U_2)-\text{dim}(U_1\cap U_2)=3+3-\text{dim}(U_1\cap U_2)=6-\text{dim}(U_1\cap U_2)$, right? (Wondering)
Then to find a basis, do we take all the sums $u_1+u_2$, where $u_1\in U_1$ and $u_2\in U_2$ ? (Wondering) I want to find also vector subspace $W$ of $\mathbb{R}^4$ such that $U_1\oplus W=\mathbb{R}^4$. To find such a $W$ do we have to extend $U_1$ to a basis of $\mathbb{R}^4$ ? (Wondering)