Determining Height of Mercury in U-tube: Air Flow Rate of 1200 cm^3/s

AI Thread Summary
Air flows through a U-tube at a rate of 1200 cm^3/s, and the problem involves determining the height of mercury in the right side of the tube using Bernoulli's equation. Initial calculations were based on incorrect densities for air and mercury, leading to an erroneous height of 4.12 cm. Upon correcting the densities to 1.3 kg/m^3 for air and 13700 kg/m^3 for mercury, the correct height was achieved. The discussion highlights the importance of using accurate fluid properties in calculations. Ultimately, the correct approach led to resolving the initial confusion and obtaining the expected result.
asdifnlg
Messages
11
Reaction score
0
Ok, Air flows through this tube at a rate of 1200 cm^3/s. Assume that air is an ideal fluid.
What is the height h of mercury in the right side of the U-tube?
Here's a picture:
http://session.masteringphysics.com/problemAsset/1001181/6/knight_Figure_15_64.jpg

First, I found the velocity of the air in the 2 cm and 4 mm tube.
In m/s, for the 2cm, i came up with 1200/(1000000pi(.01^2))
and for the 4mm 1200/(1000000pi(.002^2))
Then, I plugged it into bernoulli's equation, with the density of air as 1.2 kg/m^3. This gave the 2cm tunnel to have 5462.5 less pascals than the other 4 mm tube.
Then, using 13540 for the kg/m^3 of Hg, and setting the pressures of the two sides equal, I came up with:
5462.5 = 13540 (9.8) (h), which gave me h= .0412 m, or 4.12 cm, which is wrong. Anybody know what I did wrong?
 
Physics news on Phys.org
I'm not seeing a problem with what you did. Do you know the answer that is expected?
 
I wish I knew the answer that is expected :P Do you know if those are the right densities I used in kg/m^3?
 
Found out I was using the wrong densities ^^ I used 1.3 kg/m^3 for air and 13700 for Hg and got the right answer. My physics book is too big to bring home, so I rely on google for my constants :(
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top