Determining the electron speed in parallel plates

AI Thread Summary
The discussion focuses on calculating the speed of an electron between two parallel plates with a given electric potential. The user initially struggles with determining the electron's speed at specific times but successfully calculates the electric field strength as 2884.6 N/C. They apply the conservation of energy principle to relate potential difference to kinetic energy, leading to confusion over the variables involved. Clarifications are provided on using the work-energy principle, emphasizing that the work done on the electron can be calculated using its charge and the potential difference. The conversation highlights the importance of correctly interpreting electric field strength and potential energy in solving the problem.
ProAgnusDei
Messages
3
Reaction score
0

Homework Statement



Two parallel plates labelled W (negative) and X (positive) are separated by 5.2 cm. The electric potential between the plates is 150 V. An electron starts from rest at time tw and reaches plate X at time tx. The electron continues through an opening in plate X and reaches point P at time tP. Determine the speed at tx and tP

e = -1.6 x 10-19 C
me = 9.1 x 10-31

Homework Equations



V = kq1 / r
ΔV = ΔE/q
ε = ΔV / r
Ek = 0.5mv2

The Attempt at a Solution



I'm not sure how to determine v at tw and tx, but I did find the field strength: ε = 2884.6. We also know the electron starts from rest, so we could use the conservation of energy law to generate the following eq'n.

v2 = 2m-1kq1q2(ra-2 - rb2). But we don't have a "q2" so I'm quite lost. Any help is appreciated!

God bless and thanks!
 
Physics news on Phys.org
The Volt is a name given to the unit combination Joules/Coulomb :wink:

You should be able to find (in your notes or text) an expression for the work done on a charge falling through a potential difference. The work done shows up as kinetic energy...
 
You can start by finding the acceleration of the electron.
F = ma = qE
a = qE/m
Then it's a kinematics problem
vf^2 = 2*a*x Thats good for finding Vx
 
I used your equation (not on my eq'n sheet), a = qE/m, substituted Vq for E, leaving me with Vq˄2 / m. I found acc. to be 3.376 x 10^-6.

Plugged that into eq'n v22 = v12 + 2ad,

which reduces to v2 = sqr(2ad), and I got a velocity (vx) of 5.93 x 10^-4 m/s which seems really slow to me.
 
ProAgnusDei said:
I used your equation (not on my eq'n sheet), a = qE/m, substituted Vq for E, leaving me with Vq˄2 / m. I found acc. to be 3.376 x 10^-6.
Why would you substitute Vq for E? E here would be the electric field strength (units of [N]/[C] or [V]/[m]). You calculated the electric field strength previously, calling it ε.

However, a more slick approach is to use q*ΔV, with q being the charge on the electron and ΔV the change in electric potential (the 150V). The units are then [C][J]/[C] → [J], which is energy. That's the work done on the electron as it falls through the field...
 
Ok that makes more sense. When you wrote E, I figured you meant energy, not ε. Tak.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top