Determining total charge on the surfaces of spherical conductors

AI Thread Summary
The discussion focuses on determining the total charge on the surfaces of a solid sphere and a hollow sphere, both of which are conductors. Participants emphasize the application of Gauss' Law to find the electric field and charge distributions. Key points include the uniform alignment of excess charges on the outer surface and the absence of a net electric field inside the conductor. The use of Gaussian surfaces is recommended to clarify the signs and magnitudes of the charges involved. Ultimately, the problem was resolved by correctly applying these principles to calculate the charges on the surfaces.
RichardEpic
Messages
16
Reaction score
0
In the attached picture is all of the information to complete this problem. The picture is of a solid sphere at the center of a hallow sphere, both of which are conductors.

The question asks to find the total charge of the exterior and interior surfaces of the hollow conductor, as well as the exterior surface of the solid conductor...

I've attempted using Gauss' Law in various ways, but nothing seems to work, and I'm unsure of how to calculate the net E-field to 15,000 N/C, as indicated in the picture. If someone could point me in the right direction it's be greatly appreciated! :]
 

Attachments

  • Solid Metal Sphere at the Center of a Hollow Sphere.jpg
    Solid Metal Sphere at the Center of a Hollow Sphere.jpg
    10.4 KB · Views: 644
Physics news on Phys.org
Gah. Just as I was about to head to bed. I can't get into much detail until the morning, but the advice I can give is to remember your equation for the field due to a spherical charge distribution as well as 2 important rules:

1. In a spherical distribution the excess charges on a conductor align uniformly on the outer surface.
2. The charges will be aligned such that there is no net electric field inside the conductor itself (although there may be a net field in the gap between the inner and outer conductors if there is a net charge on the inner conductor).

Choosing Gaussian surfaces to take advantage of these properties, you should be able to determine the signs (do this first) and magnitudes of the net charges at play. Hope this helps. If you're still unclear on where to go, I'll return to this thread in the morning.
 
Hmm...then it would seem to me that the point outside both the spheres would be easiest to calculate! By what you've said...do you mean that the inner surface of the Hallow sphere is actually inducing no E-field at that point..?

I think I am only confused now about the Inner E-field, I will attempt the Gaussian surfaces at these points and see how they go...thanks!
 
Wow...I got it! The inner charge has to be opposite the inner charge, and I was able to solve for the two points by utilizing gaussian surfaces to give me the charges of the exterior surface of both! Your help is greatly appreciated!

WOO!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top