- #1
Luck0
- 22
- 1
So, we know that if g is a Lie algebra, we can take the cartan subalgebra h ⊂ g and diagonalize the adjoint representation of h, ad(h). This generates the Cartan-Weyl basis for g. Now, let G be the Lie group with Lie algebra g. Is there a way to diagonalize the adjoint representation Ad(T) of some abelian subgroup T ⊂ G and take the resulting eigenvectors as a basis of g using the Cartan-Weyl basis?