Differential Equation, Rewriting solution

ecoo
Messages
86
Reaction score
2

Homework Statement



Untitled.png


(also express C and alpha as functions of A and B)

I need help with the second part (rewriting the solution).

Homework Equations



e = cos(θ) + jsin(θ)

The Attempt at a Solution



Unfortunately, I can't think of how to even begin solving. I have the notion that I have to combine the two terms into one, however the A and B constants prevent me from doing so. Can someone point me in the right direction?

Thanks
 

Attachments

  • Untitled.png
    Untitled.png
    13.4 KB · Views: 769
Physics news on Phys.org
Have you been able to do the first part?
 
Chestermiller said:
Have you been able to do the first part?

Yes, I have already done the first part. I did do it backwards, however, because I do not know how to solve differential equations (second derivative ---> function) yet.
 
ecoo said:
Yes, I have already done the first part. I did do it backwards, however, because I do not know how to solve differential equations (second derivative ---> function) yet.
Then by the same backwards approach, do you know the trigonometric identity for the cosine of the sum of two angles?
 
  • Like
Likes ecoo
Chestermiller said:
Then by the same backwards approach, do you know the trigonometric identity for the cosine of the sum of two angles?

Thanks for the help
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top