- #1
LagrangeEuler
- 717
- 22
Time independent Schroedinger equation in ##\delta## potential ##V(x)=-\lambda \delta(x)##, where ##\lambda >0## is given by
[tex]-\frac{\hbar^2}{2m}\frac{d^2}{d x^2}\psi(x)-\lambda \delta(x)\psi(x)=E\psi(x)[/tex].
How to find dimension of ##\lambda##? Dimension of ##V(x)## is
[tex][V(x)]=ML^2T^{-2}[/tex].
Because it is one dimensional problem dimension of ##\psi(x)## is
[tex][\psi(x)]=L^{-\frac{1}{2}}[/tex].
Is then also
[tex][\delta(x)]=L^{-\frac{1}{2}}[/tex]?
[tex]-\frac{\hbar^2}{2m}\frac{d^2}{d x^2}\psi(x)-\lambda \delta(x)\psi(x)=E\psi(x)[/tex].
How to find dimension of ##\lambda##? Dimension of ##V(x)## is
[tex][V(x)]=ML^2T^{-2}[/tex].
Because it is one dimensional problem dimension of ##\psi(x)## is
[tex][\psi(x)]=L^{-\frac{1}{2}}[/tex].
Is then also
[tex][\delta(x)]=L^{-\frac{1}{2}}[/tex]?