Dirac Delta using periodic functions

AI Thread Summary
The discussion revolves around deriving the Dirac delta function using periodic functions and Fourier series. The user explores the transformation of integrals involving the delta function and periodic terms, ultimately aiming to express the delta function in terms of Fourier series. They transition to complex Fourier series definitions, applying Cauchy's formula to evaluate integrals and derive the expected result of the delta function. The conversation highlights the challenges and thought processes involved in manipulating these mathematical identities. The user concludes by noting the relationship between the delta function and periodic functions through Fourier series.
SisypheanZealot
Messages
9
Reaction score
6
Homework Statement
Exercise1.3: Using the periodic form (1.14) for the Dirac delta, show
$$\int^{\infty}_{-\infty}dx\:f(x)\delta(x-y)=\sum^{\infty}_{n=-\infty}f(y+2nL)$$
Relevant Equations
$$\delta(x-y)=\frac{1}{2L}\sum^{\infty}_{n=-\infty}\lbrace sin(\frac{n\pi x}{L})sin(\frac{n\pi y}{L})+cos(\frac{n\pi x}{L})cos(\frac{n\pi y}{L})\rbrace$$
I know it is something simple that I am missing, but for the life of me I am stuck. So, I used the identity ##sin(a)sin(b)+cos(a)cos(b)=cos(a-b)## which gives me $$\int^{\infty}_{-\infty}dx\:f(x)\delta(x-y)=\int^{\infty}_{-\infty}dx\:f(x)\frac{1}{2L}\sum^{\infty}_{n=-\infty}\lbrace sin(\frac{n\pi x}{L})sin(\frac{n\pi y}{L})+cos(\frac{n\pi x}{L})cos(\frac{n\pi y}{L})\rbrace$$ $$=\int^{\infty}_{-\infty}dx\:f(x)\frac{1}{2L}\sum^{\infty}_{n=-\infty}cos(\frac{n\pi}{L}(x-y))$$ Then I performed the transformation ##u=\frac{\pi}{L}(x-y)## giving $$=\frac{1}{2L}\sum^{\infty}_{n=-\infty}\frac{L}{\pi}\int^{\infty}_{-\infty}du\:f(u\frac{L}{\pi}+y)cos(u\cdot n)$$ $$=\int^{\infty}_{-\infty}du\:f(u\frac{L}{\pi}+y)\frac{1}{2\pi}\sum^{\infty}_{n=-\infty}cos(u\cdot n)$$ $$\int^{\infty}_{-\infty}du\:f(u\frac{L}{\pi}+y)\lbrace\frac{1}{2\pi}+\frac{1}{\pi}\sum^{\infty}_{n=1}cos(u\cdot n)\rbrace$$ Now we have ##u=2\pi## as the solutions for ##cos(u\cdot n)=1## which to me looks like it gives ##f(2L+y)##. What am I not seeing?
 
Last edited:
Physics news on Phys.org
New thought. What if I work backwards on this. so start with $$\sum^{\infty}_{n=-\infty}f(2nL+y)$$ Then set this equal to $$\int dx f(x)\sum^{\infty}_{n=-\infty}\delta(x-(2nL+y))$$ Now look at the delta term as a periodic term, and look at the Fourier transform definition of the Dirac Delta $$\delta(x-y)=\int\frac{dz}{2\pi}e^{iz(x-y)}$$ The Fourier will be invariant under rotation of multiples of ##2\pi##. So then, I can rewrite the integral as $$\int\frac{dz}{2\pi}e^{iz(x-y)}e^{-i2n\pi}$$ This will then give the new definition of the delta function $$\sum^{\infty}_{n=-\infty}\delta(x-(2n\pi-y))=\sum^{\infty}_{n=-\infty}\int\frac{dz}{2\pi}e^{iz(x-y)}e^{-i2n\pi}$$. But, then I need to worry about the modes of the system. I don't know if this moved me forward, or just in circles.
 
So, for the interested. I think I finally got this thing figured out. The first thing that we are going to do is transition to the complex Fourier series definitions of ##f(x)## and ##\delta(x-y)## and set ##L=\pi##. i.e. $$f(x)=\sum_{n=-\infty}^{\infty}c_{n}e^{inx}$$ and $$\delta(x-y)=\int\frac{dz}{2\pi}e^{iz(x-y)}$$ So that the formula takes the form $$\int dx f(x)\delta(x-y)=\int dx \sum_{n=-\infty}^{\infty}c_{n}e^{inx}\int\frac{dz}{2\pi}e^{iz(x-y)}$$ then doing some algebra we get $$\int dx \sum_{n=-\infty}^{\infty}c_{n}\int\frac{dz}{2\pi}e^{i[z(x-y)+nx]}$$ performing the integration we then get $$\sum_{n=-\infty}^{\infty}c_{n}\int dx\frac{e^{i[z(x-y)+nx]}}{2\pi i(x-y)}$$ Now we apply Cauchy's formula ##\oint\frac{g(w)}{w-w_0}dz=2\pi ig(w_0)## to this. Doing so we notice that the translations are ##w=x,w_0=y##, and that there is a pole at ##x=y##. So, the problem becomes $$\sum_{n=-\infty}^{\infty}c_{n}\int dx\frac{e^{i[z(x-y)+nx]}}{2\pi i(x-y)}=\sum_{n=-\infty}^{\infty}c_{n}e^{i[z(y-y)+ny]}$$ Which then gives us the common result of the original problem $$\int dx f(x)\delta(x-y)=\sum_{n=-\infty}^{\infty}c_{n}e^{iny}=f(y)$$ Now, to progress from here we need to introduce yet another definition for the Dirac delta ##\delta(n)=\sum^{\infty}_{m=-\infty}e^{i2\pi nm}## we now multiple this by the new Fourier series giving $$\sum_{n=-\infty}^{\infty}c_{n}e^{iny}\sum^{\infty}_{m=-\infty}e^{i2\pi nm}=\sum^{\infty}_{m=-\infty}\sum_{n=-\infty}^{\infty}c_{n}e^{in(y+2\pi m)}=\sum^{\infty}_{m=-\infty}f(y+2\pi m)$$
 
Last edited:
  • Like
Likes Abhishek11235
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top