A Dirac's "comprehensive action principle" -- independent equations

Kostik
Messages
274
Reaction score
32
TL;DR Summary
Dirac employs a general action principle to obtain Einstein's equation and the other dynamical equations for the various "coordinates" in the combined action. But these equations are not all independent, because.....
In Dirac's "General Theory of Relativity", he develops the "comprehensive action principle" in chapter 30. Simply put, he writes a combined action for the gravitational field and all other matter-energy fields ##I=I_g+I'##. Varying this: $$\delta(I_g+I')=\int ( p^{\mu\nu}\delta g_{\mu\nu} + \sum_n \chi^n \delta \phi_n ) \sqrt{-g} \, d^4 x$$ The function ##p^{\mu\nu}## picks up a term ##-(16\pi)^{-1} \left( R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R \right)## from the gravitational field, plus any other terms in ##\delta g_{\mu\nu}## coming from the other matter-energy fields, which Dirac denotes by ##N^{\mu\nu}##.

Setting ##p^{\mu\nu}=0## and ##\chi^n = 0## gives the equations for the "coordinates" ##g_{\mu\nu}## and ##\phi_n##. Thus, for example, if ##I'## includes the action for the electromagnetic field and a distribution of charged matter, we get Einstein's equation plus Maxwell's (inhomogeneous) equations and the Lorentz force equation.

In chapter 30, Dirac writes $$p^{\mu\nu}= -(16\pi)^{-1} \left( R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R \right) + N^{\mu\nu}$$ and shows that ##{N^{\mu\nu}}_{;\nu}=0##. He concludes that "the equations ##p^{\mu\nu}=0## and ##\chi^n = 0## "are not all independent."

How does he conclude that?


Of course, because of the contracted Bianci relation, we have ##{p^{\mu\nu}}_{;\nu} = {N^{\mu\nu}}_{;\nu}=0##. But this doesn't seem particularly interesting, since we are setting ##p^{\mu\nu}=0## as one of the equations, and ##p^{\mu\nu}## (or ##N^{\mu\nu}##) does not involve the ##\chi^n##.
 
Last edited:
Physics news on Phys.org
N consists of various fields, e.g., matter, EM field. Each fileld could be independent but there is a constraint that covariant divergent of their sum, N, should be zero.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top