Directional derivative question

question dude
Messages
80
Reaction score
0
attachment.php?attachmentid=262056&d=1389451604.jpg



I've done the first part, but I'm stuck on the second paragraph of the question. Maybe I'm being stupid, I don't even understand exactly what is meant by, 'the level curve'.

I also don't quite understand the whole concept of directional derivative. When it says, 'the gradient in the direction making an angle A with the x-axis, how should I think of this? what does the gradient mean in this context?

because when its just a simple curve/line on an xy axis, I know what the 'gradient' means, it is literally how much 'y' changes per unit x along that curve/line. But when I'm told about a 'gradient in a direction', I'm confused.
 
Physics news on Phys.org
hey, question dude! :smile:
question dude said:
… what is meant by, 'the level curve'.

think of the 3D graph, z = f(x,y)

you can make a 2D contour map showing the lines of equal height

those contours are the level curves :wink:
I also don't quite understand the whole concept of directional derivative. When it says, 'the gradient in the direction making an angle A with the x-axis, how should I think of this? what does the gradient mean in this context?

the directional derivative in the direction (cosθ,sinθ) is df(kcosθ,ksinθ)/dk

it's the rate at which f increases if you go along the line y/x = tanθ :smile:
 
question dude said:
attachment.php?attachmentid=262056&d=1389451604.jpg



I've done the first part, but I'm stuck on the second paragraph of the question. Maybe I'm being stupid, I don't even understand exactly what is meant by, 'the level curve'.

I also don't quite understand the whole concept of directional derivative. When it says, 'the gradient in the direction making an angle A with the x-axis, how should I think of this? what does the gradient mean in this context?

because when its just a simple curve/line on an xy axis, I know what the 'gradient' means, it is literally how much 'y' changes per unit x along that curve/line. But when I'm told about a 'gradient in a direction', I'm confused.

You are supposed to show your work, confused or not (those are PF rules). I don't see how you can have done the first part (which involves directional derivatives) but then claim you do not understand directional derivatives. I would need to see your work in order to grasp what is going on.
 
tiny-tim said:
hey, question dude! :smile:


think of the 3D graph, z = f(x,y)

you can make a 2D contour map showing the lines of equal height

those contours are the level curves :wink:


the directional derivative in the direction (cosθ,sinθ) is df(kcosθ,ksinθ)/dk

it's the rate at which f increases if you go along the line y/x = tanθ :smile:

Thanks a lot! I understand what's going on now. Before I was just plugging in the numbers without knowing the concepts properly.
 
Ray Vickson said:
You are supposed to show your work, confused or not (those are PF rules). I don't see how you can have done the first part (which involves directional derivatives) but then claim you do not understand directional derivatives. I would need to see your work in order to grasp what is going on.

Sorry about that, what I meant to get across, was that I understood the method in a sort of algorithmic way, but didn't understood the reason behind steps due to not understanding some basic stuff like 'level curve'. Anyway its sorted now.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...

Similar threads

Replies
8
Views
2K
Replies
2
Views
2K
Replies
4
Views
1K
Replies
11
Views
2K
Replies
11
Views
2K
Replies
1
Views
3K
Replies
5
Views
1K
Back
Top